1
|
Mrug S, Barker-Kamps M, Orihuela CA, Patki A, Tiwari HK. Childhood Neighborhood Disadvantage, Parenting, and Adult Health. Am J Prev Med 2022; 63:S28-S36. [PMID: 35725138 PMCID: PMC9219037 DOI: 10.1016/j.amepre.2022.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Growing up in disadvantaged neighborhoods is associated with poor adult health indicators. Consistent and supportive parenting plays a key role in life-long health, but it is not known whether positive parenting can mitigate the relationship between neighborhood adversity and poor health. This study examines parenting as a moderator of the links between childhood neighborhood characteristics and adult health indicators. METHODS A sample of 305 individuals (61% female; 82% African American, 18% Caucasian) were assessed in childhood (T1; age 11 years; 2003‒2004) and adulthood (T2; age 27 years; 2018‒2021). At T1, neighborhood poverty was derived from census data; neighborhood disorder was reported by parents. Children reported on parental harsh discipline, inconsistent discipline, and parental nurturance. At T2, health outcomes included BMI, serum cortisol and C-reactive protein (CRP), and salivary DNA methylation index related to CRP. Regression models predicted T2 health outcomes from T1 neighborhood and parenting variables and their interactions, adjusting for clustering and confounders. Data were analyzed in 2021. RESULTS Neighborhood poverty was associated with lower cortisol, whereas neighborhood disorder was linked with CRP‒related DNA methylation. Multiple interactions between neighborhood and parenting variables emerged, indicating that adverse neighborhood conditions were only related to poor adult health when combined with inconsistent discipline and low parental nurturance. By contrast, warm and supportive parenting, consistent discipline, and to a lesser extent harsh discipline buffered children from poor health outcomes associated with neighborhood disadvantage. CONCLUSIONS Interventions enhancing consistent and nurturing parenting may help to reduce the long-term associations of neighborhood disadvantage with poor health.
Collapse
Affiliation(s)
- Sylvie Mrug
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama.
| | - Malcolm Barker-Kamps
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Catheryn A Orihuela
- Department of Psychology, College of Arts and Sciences, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Amit Patki
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
2
|
Winchester P, Nilsson E, Beck D, Skinner MK. Preterm birth buccal cell epigenetic biomarkers to facilitate preventative medicine. Sci Rep 2022; 12:3361. [PMID: 35232984 PMCID: PMC8888575 DOI: 10.1038/s41598-022-07262-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Preterm birth is the major cause of newborn and infant mortality affecting nearly one in every ten live births. The current study was designed to develop an epigenetic biomarker for susceptibility of preterm birth using buccal cells from the mother, father, and child (triads). An epigenome-wide association study (EWAS) was used to identify differential DNA methylation regions (DMRs) using a comparison of control term birth versus preterm birth triads. Epigenetic DMR associations with preterm birth were identified for both the mother and father that were distinct and suggest potential epigenetic contributions from both parents. The mother (165 DMRs) and female child (136 DMRs) at p < 1e-04 had the highest number of DMRs and were highly similar suggesting potential epigenetic inheritance of the epimutations. The male child had negligible DMR associations. The DMR associated genes for each group involve previously identified preterm birth associated genes. Observations identify a potential paternal germline contribution for preterm birth and identify the potential epigenetic inheritance of preterm birth susceptibility for the female child later in life. Although expanded clinical trials and preconception trials are required to optimize the potential epigenetic biomarkers, such epigenetic biomarkers may allow preventative medicine strategies to reduce the incidence of preterm birth.
Collapse
Affiliation(s)
- Paul Winchester
- Department of Pediatrics, St. Franciscan Hospital, School of Medicine, Indiana University, Indianapolis, IN, 46202-5201, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
3
|
Alberry B, Laufer BI, Chater-Diehl E, Singh SM. Epigenetic Impacts of Early Life Stress in Fetal Alcohol Spectrum Disorders Shape the Neurodevelopmental Continuum. Front Mol Neurosci 2021; 14:671891. [PMID: 34149355 PMCID: PMC8209299 DOI: 10.3389/fnmol.2021.671891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shiva M Singh
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol 2021; 22:18. [PMID: 33402197 PMCID: PMC7786996 DOI: 10.1186/s13059-020-02223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although the genomes of monozygotic twins are practically identical, their methylomes may evolve divergently throughout their lifetime as a consequence of factors such as the environment or aging. Particularly for young and healthy monozygotic twins, DNA methylation divergence, if any, may be restricted to stochastic processes occurring post-twinning during embryonic development and early life. However, to what extent such stochastic mechanisms can systematically provide a stable source of inter-individual epigenetic variation remains uncertain until now. RESULTS We enriched for inter-individual stochastic variation by using an equivalence testing-based statistical approach on whole blood methylation microarray data from healthy adolescent monozygotic twins. As a result, we identified 333 CpGs displaying similarly large methylation variation between monozygotic co-twins and unrelated individuals. Although their methylation variation surpasses measurement error and is stable in a short timescale, susceptibility to aging is apparent in the long term. Additionally, 46% of these CpGs were replicated in adipose tissue. The identified sites are significantly enriched at the clustered protocadherin loci, known for stochastic methylation in developing neurons. We also confirmed an enrichment in monozygotic twin DNA methylation discordance at these loci in whole genome bisulfite sequencing data from blood and adipose tissue. CONCLUSIONS We have isolated a component of stochastic methylation variation, distinct from genetic influence, measurement error, and epigenetic drift. Biomarkers enriched in this component may serve in the future as the basis for universal epigenetic fingerprinting, relevant for instance in the discrimination of monozygotic twin individuals in forensic applications, currently impossible with standard DNA profiling.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Turinsky AL, Choufani S, Lu K, Liu D, Mashouri P, Min D, Weksberg R, Brudno M. EpigenCentral: Portal for DNA methylation data analysis and classification in rare diseases. Hum Mutat 2020; 41:1722-1733. [PMID: 32623772 DOI: 10.1002/humu.24076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023]
Abstract
Epigenetic processes play a key role in regulating gene expression. Genetic variants that disrupt chromatin-modifying proteins are associated with a broad range of diseases, some of which have specific epigenetic patterns, such as aberrant DNA methylation (DNAm), which may be used as disease biomarkers. While much of the epigenetic research has focused on cancer, there is a paucity of resources devoted to neurodevelopmental disorders (NDDs), which include autism spectrum disorder and many rare, clinically overlapping syndromes. To address this challenge, we created EpigenCentral, a free web resource for biomedical researchers, molecular diagnostic laboratories, and clinical practitioners to perform the interactive classification and analysis of DNAm data related to NDDs. It allows users to search for known disease-associated patterns in their DNAm data, classify genetic variants as pathogenic or benign to assist in molecular diagnostics, or analyze patterns of differential methylation in their data through a simple web form. EpigenCentral is freely available at http://epigen.ccm.sickkids.ca/.
Collapse
Affiliation(s)
- Andrei L Turinsky
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kevin Lu
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Da Liu
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pouria Mashouri
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel Min
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada
| | - Michael Brudno
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Techna Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Stonawski V, Roetner J, Goecke TW, Fasching PA, Beckmann MW, Kornhuber J, Kratz O, Moll GH, Eichler A, Heinrich H, Frey S. Genome-Wide DNA Methylation Patterns in Children Exposed to Nonpharmacologically Treated Prenatal Depressive Symptoms: Results From 2 Independent Cohorts. Epigenet Insights 2020; 13:2516865720932146. [PMID: 32596638 PMCID: PMC7298426 DOI: 10.1177/2516865720932146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/01/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Maternal depressive symptoms are a common phenomenon during pregnancy and are related to negative outcomes for child development and health. Modifications in child DNA methylation are discussed as an underlying mechanism for the association between prenatal depressive symptoms and alterations in child outcomes. However, formerly reported genome-wide associations have yet to be replicated. METHODS In an epigenome-wide association study (EWAS), alterations of DNA methylation related to maternal prenatal depressive symptoms were investigated in buccal cell samples from 174 children (n = 52 exposed to prenatal depressive symptoms; 6-9 years old) of the German longitudinal study FRAMES-FRANCES. Whole blood samples from the independent, age-comparable ARIES subsample of the ARIES/ALSPAC study (n = 641; n = 159 exposed to prenatal depressive symptoms; 7-8 years old) were examined as a confirmation sample. Depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale. DNA methylation was analyzed with the Infinium Human Methylation 450k BeadChip. Modifications in single CpGs, regions, and biological pathways were investigated. Results were adjusted for age and birth outcomes as well as postnatal and current maternal depressive symptoms. Analyses were performed for the whole sample as well as separated for sex. RESULTS The EWAS yielded no differentially methylated CpG or region as well as no accordance between samples withstanding correction for multiple testing. In pathway analyses, no overlapping functional domain was found to be enriched for either sample. A comparison of current and former findings suggests some overlapping methylation modifications from infancy to childhood. Results suggest that there might be sex-specific differential methylation, which should be further investigated in additional studies. CONCLUSIONS The current, mainly nonsignificant, results challenge the assumption of consistent modifications of DNA methylation in children exposed to prenatal depressive symptoms. Despite the relatively small sample size used in this study, this lack of significant results may reflect diverse issues of environmental epigenetic studies, which need to be addressed in future research.
Collapse
Affiliation(s)
- Valeska Stonawski
- Department of Child and Adolescent
Mental Health, University Hospital Erlangen, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jakob Roetner
- Department of Child and Adolescent
Mental Health, University Hospital Erlangen, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tamme W Goecke
- Department of Gynecology and Obstetrics,
University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
(FAU), Erlangen, Germany
- Department of Obstetrics and
Gynaecology, RoMed Hospital Rosenheim, Rosenheim, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics,
University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
(FAU), Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics,
University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg
(FAU), Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and
Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver Kratz
- Department of Child and Adolescent
Mental Health, University Hospital Erlangen, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gunther H Moll
- Department of Child and Adolescent
Mental Health, University Hospital Erlangen, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anna Eichler
- Department of Child and Adolescent
Mental Health, University Hospital Erlangen, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Stefan Frey
- Department of Child and Adolescent
Mental Health, University Hospital Erlangen, Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Abstract
Our social environment, from the microscopic to the macro-social, affects us for the entirety of our lives. One integral line of research to examine how interpersonal and societal environments can get "under the skin" is through the lens of epigenetics. Epigenetic mechanisms are adaptations made to our genome in response to our environment which include tags placed on and removed from the DNA itself to how our DNA is packaged, affecting how our genes are read, transcribed, and interact. These tags are affected by social environments and can persist over time; this may aid us in responding to experiences and exposures, both the enriched and the disadvantageous. From memory formation to immune function, the experience-dependent plasticity of epigenetic modifications to micro- and macro-social environments may contribute to the process of learning from comfort, pain, and stress to better survive in whatever circumstances life has in store.
Collapse
Affiliation(s)
- Sarah M Merrill
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Gladish
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Human Early Learning Partnership, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|