1
|
Zhang M, Lu L, Li Y, Wu Q, Liu Y, Liu H, Tang H, Lin R, Chen H, Zeng T, Tian Y, Yan Y, Wei Y, Ren C, Li W, Liu M, Yu J, Liu J, Lin X, Zeng G, Cheng C, Jiang X, Sun Y. Identification of SNPs and INDELS associated with duck egg quality traits through a genome-wide association analysis. Poult Sci 2024; 103:104459. [PMID: 39504828 DOI: 10.1016/j.psj.2024.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Egg quality traits are economically important in the poultry industry. To explore the genetic architecture and identify potential candidate genes, a genome-wide association study (GWAS) was performed for 13 egg quality traits using data from whole-genome sequencing of 299 Longyan Shan-ma female ducks, including 12 quantitative traits and one qualitative trait, eggshell color (ESC; white, light green, green). From estimation of pedigree genetic parameters, heritability (h2) ranged from 0.022 to 0.996 for the 12 quantitative traits, with the highest h2 (0.996) for eggshell color a* value (ESCA) and the lowest h2 (0.022) for egg yolk percentage relative to EW. A total of 8,874 single nucleotide polymorphism (SNP)-based significant associations (1.0 × 10-6) and 247 insertion-deletion (indel)-based significant associations (1.00 × 10-5) were identified, including 5,980 SNPs and 159 indel markers. From 5,924 SNPs and 143 indels associated with ESC traits, 181 potential candidate genes were identified, and most significant SNPs and indels (P < 1.0 × 10-20) were located at 1.86 Mb (44.29-46.15 Mb) on chromosome 4. The top SNP (chr4:45325309:C>A; P = 7.97 × 10-43) and the top indel (chr4:45299595:delTTCCACTCCAC; P = 4.20 × 10-36) for the ESC a* value were within two known ESC candidate genes; ATP-binding cassette subfamily G member 2 (ABCG2) and protein kinase cGMP-dependent 2 (PRKG2). Of 56 SNPs and 16 indels associated with other egg quality traits, 46 potential candidate genes were identified including synapse differentiation-inducing 1-like (SYNDIG1L) for EW, and core histone macro-H2A.1 (LOC101795967) and neurogenin 1 (NEUROG1) for egg shape index; and four genes including collagen type VI alpha 3 chain (COL6A3), lysine demethylase 7A (KDM7A), LOC101802169, and sperm-associated antigen 16 (SPAG16) for egg yolk weight and the percentage of yolk to total egg weight. Of the 46 genes, the molecular functions of 22 are related to protein binding, indicating important roles in the formation of egg quality traits. Our findings provide new insight into the genetic basis of egg quality traits in ducks.
Collapse
Affiliation(s)
- Min Zhang
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Lizhi Lu
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yan Li
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Qiong Wu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Yanhui Liu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Hongfei Liu
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China
| | - Hehe Tang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China
| | - Rulong Lin
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, 364031, PR China
| | - Hongping Chen
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, 364031, PR China
| | - Tao Zeng
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yong Tian
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yuting Yan
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Yanning Wei
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Chenyu Ren
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Wenfu Li
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Min Liu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Jie Yu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Jiawen Liu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Xin Lin
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Guanghua Zeng
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Chunmei Cheng
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Xiaobing Jiang
- Fujian Provincial Animal Husbandry Headquarters, Fuzhou, Fujian 350003, PR China
| | - Yanfa Sun
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China.
| |
Collapse
|
2
|
Russell SJ, Zhao C, Biondic S, Menezes K, Hagemann-Jensen M, Librach CL, Petropoulos S. An atlas of small non-coding RNAs in human preimplantation development. Nat Commun 2024; 15:8634. [PMID: 39367016 PMCID: PMC11452719 DOI: 10.1038/s41467-024-52943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Understanding the molecular circuitries that govern early embryogenesis is important, yet our knowledge of these in human preimplantation development remains limited. Small non-coding RNAs (sncRNAs) can regulate gene expression and thus impact blastocyst formation, however, the expression of specific biotypes and their dynamics during preimplantation development remains unknown. Here we identify the abundance of and kinetics of piRNA, rRNA, snoRNA, tRNA, and miRNA from embryonic day (E)3-7 and isolate specific miRNAs and snoRNAs of particular importance in blastocyst formation and pluripotency. These sncRNAs correspond to specific genomic hotspots: an enrichment of the chromosome 19 miRNA cluster (C19MC) in the trophectoderm (TE), and the chromosome 14 miRNA cluster (C14MC) and MEG8-related snoRNAs in the inner cell mass (ICM), which may serve as 'master regulators' of potency and lineage. Additionally, we observe a developmental transition with 21 isomiRs and in tRNA fragment (tRF) codon usage and identify two novel miRNAs. Our analysis provides a comprehensive measure of sncRNA biotypes and their corresponding dynamics throughout human preimplantation development, providing an extensive resource. Better understanding the sncRNA regulatory programmes in human embryogenesis will inform strategies to improve embryo development and outcomes of assisted reproductive technologies. We anticipate broad usage of our data as a resource for studies aimed at understanding embryogenesis, optimising stem cell-based models, assisted reproductive technology, and stem cell biology.
Collapse
MESH Headings
- Humans
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Embryonic Development/genetics
- Blastocyst/metabolism
- Gene Expression Regulation, Developmental
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Female
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/genetics
- Chromosomes, Human, Pair 19/genetics
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
Collapse
Affiliation(s)
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Savana Biondic
- Faculty of Medicine, Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, Canada
| | | | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden.
- Faculty of Medicine, Molecular Biology Program, Université de Montréal, Montréal, QC, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montréal, Canada.
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Faculty of Medicine, Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Pastwińska J, Karwaciak I, Karaś K, Sałkowska A, Chałaśkiewicz K, Strapagiel D, Sobalska-Kwapis M, Dastych J, Ratajewski M. α-Hemolysin from Staphylococcus aureus Changes the Epigenetic Landscape of Th17 Cells. Immunohorizons 2024; 8:606-621. [PMID: 39240270 PMCID: PMC11447695 DOI: 10.4049/immunohorizons.2400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The human body harbors a substantial population of bacteria, which may outnumber host cells. Thus, there are multiple interactions between both cell types. Given the common presence of Staphylococcus aureus in the human body and the role of Th17 cells in controlling this pathogen on mucous membranes, we sought to investigate the effect of α-hemolysin, which is produced by this bacterium, on differentiating Th17 cells. RNA sequencing analysis revealed that α-hemolysin influences the expression of signature genes for Th17 cells as well as genes involved in epigenetic regulation. We observed alterations in various histone marks and genome methylation levels via whole-genome bisulfite sequencing. Our findings underscore how bacterial proteins can significantly influence the transcriptome, epigenome, and phenotype of human Th17 cells, highlighting the intricate and complex nature of the interaction between immune cells and the microbiota.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Katarzyna Chałaśkiewicz
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
4
|
Martini D, Digregorio M, Voto IAP, Morabito G, Degl'Innocenti A, Giudetti G, Giannaccini M, Andreazzoli M. Kdm7a expression is spatiotemporally regulated in developing Xenopus laevis embryos, and its overexpression influences late retinal development. Dev Dyn 2024; 253:508-518. [PMID: 37909656 DOI: 10.1002/dvdy.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Post-translational histone modifications are among the most common epigenetic modifications that orchestrate gene expression, playing a pivotal role during embryonic development and in various pathological conditions. Among histone lysine demethylases, KDM7A, also known as KIAA1718 or JHDM1D, catalyzes the demethylation of H3K9me1/2 and H3K27me1/2, leading to transcriptional regulation. Previous data suggest that KDM7A plays a central role in several biological processes, including cell proliferation, commitment, differentiation, apoptosis, and maintenance. However, information on the expression pattern of KDM7A in whole organisms is limited, and its functional role is still unclear. RESULTS In Xenopus development, kdm7a is expressed early, undergoing spatiotemporal regulation in various organs and tissues, including the central nervous system and the eye. Focusing on retinal development, we found that kdm7a overexpression does not affect the expression of genes critically involved in early neural development and eye-field specification, whereas unbalances the distribution of neural cell subtypes in the mature retina by disfavoring the development of ganglion cells while promoting that of horizontal cells. CONCLUSIONS Kdm7a is dynamically expressed during embryonic development, and its overexpression influences late retinal development, suggesting a potential involvement in the molecular machinery regulating the spatiotemporally ordered generation of retinal neuronal subtypes.
Collapse
|
5
|
Li CY, Liu YJ, Tao F, Chen RY, Shi JJ, Lu JF, Yang GJ, Chen J. Lysine-specific demethylase 7A (KDM7A): A potential target for disease therapy. Biochem Pharmacol 2023; 216:115799. [PMID: 37696455 DOI: 10.1016/j.bcp.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Histone demethylation is a kind of epigenetic modification mediated by a variety of enzymes and participates in regulating multiple physiological and pathological events. Lysine-specific demethylase 7A is a kind of α-ketoglutarate- and Fe(II)-dependent demethylase belonging to the PHF2/8 subfamily of the JmjC demethylases. KDM7A is mainly localized in the nucleus and contributes to transcriptional activation via removing mono- and di-methyl groups from the lysine residues 9 and 27 of Histone H3. Mounting studies support that KDM7A is not only necessary for normal embryonic, neural, and skeletal development, but also associated with cancer, inflammation, osteoporosis, and other diseases. Herein, the structure of KDM7A is described by comparing the similarities and differences of its amino acid sequences of KDM7A and other Histone demethylases; the functions of KDM7A in homeostasis and dyshomeostasis are summarized via documenting its content and related signaling; the currently known KDM7A-specific inhibitors and their structural relationship are listed based on their structure optimization and pharmacological activities; and the challenges and opportunities in exploring functions and developing targeted agents of KDM7A are also prospected via presenting encountered problems and potential solutions, which will provide an insight in functional exploration and drug discovery for KDM7A-related diseases.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Wei C, Zeng H, Zhong Z, Cai X, Teng J, Liu Y, Zhao Y, Wu X, Li J, Zhang Z. Integration of non-additive genome-wide association study with a multi-tissue transcriptome analysis of growth and carcass traits in Duroc pigs. Animal 2023; 17:100817. [PMID: 37196577 DOI: 10.1016/j.animal.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Growth and carcass traits are of economic importance in the pig production, which affect pork quality and profitability of finishing pig production. This study used whole-genome and transcriptome sequencing technologies to identify potential candidate genes affecting growth and carcass traits in Duroc pigs. The medium (50-60 k) single nucleotide polymorphism (SNP) arrays of 4 154 Duroc pigs from three populations were imputed to whole-genome sequence data, yielding 10 463 227 markers on 18 autosomes. The dominance heritabilities estimated for growth and carcass traits ranged from 0.000 ± 0.041 to 0.161 ± 0.054. Using non-additive genome-wide association study (GWAS), we identified 80 dominance quantitative trait loci for growth and carcass traits at genome-wide significance (false discovery rate < 5%), 15 of which were also detected in our additive GWAS. After fine mapping, 31 candidate genes for dominance GWAS were annotated, and 8 of them were highlighted that have been previously reported to be associated with growth and development (e.g. SNX14, RELN and ENPP2), autosomal recessive diseases (e.g. AMPH, SNX14, RELN and CACNB4) and immune response (e.g. UNC93B1 and PPM1D). By integrating the lead SNPs with RNA-seq data of 34 pig tissues from the Pig Genotype-Tissue Expression project (https://piggtex.farmgtex.org/), we found that the rs691128548, rs333063869, and rs1110730611 have significantly dominant effects for the expression of SNX14, AMPH and UNC93B1 genes in tissues related to growth and development for pig, respectively. Finally, the identified candidate genes were significantly enriched for biological processes involved in the cell and organ development, lipids catabolic process and phosphatidylinositol 3-kinase signalling (P < 0.05). These results provide new molecular markers for meat production and quality selection of pig as well as basis for deciphering the genetic mechanisms of growth and carcass traits.
Collapse
Affiliation(s)
- Chen Wei
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Haonan Zeng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhanming Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiaodian Cai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jingyan Teng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yuqiang Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yunxiang Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Xibo Wu
- Guangxi Guiken Yongxin Animal Husbandry Group Co. Ltd, Nanning 530000, PR China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
7
|
Simultaneous Inhibition of Histone Deacetylases and RNA Synthesis Enables Totipotency Reprogramming in Pig SCNT Embryos. Int J Mol Sci 2022; 23:ijms232214142. [PMID: 36430635 PMCID: PMC9697165 DOI: 10.3390/ijms232214142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Combining somatic cell nuclear transfer (SCNT) with genome editing technologies has emerged as a powerful platform for the creation of unique swine lineages for agricultural and biomedical applications. However, successful application of this research platform is still hampered by the low efficiency of these technologies, particularly in attaining complete cell reprogramming for the production of cloned pigs. Treating SCNT embryos with histone deacetylase inhibitors (HDACis), such as Scriptaid, has been routinely used to facilitate chromatin reprogramming after nuclear transfer. While increasing histone acetylation leads to a more relaxed chromatin configuration that facilitates the access of reprogramming factors and DNA repair machinery, it may also promote the expression of genes that are unnecessary or detrimental for normal embryo development. In this study, we evaluated the impact of inhibiting both histone deacetylases and RNA synthesis on pre- and post-implantation development of pig SCNT embryos. Our findings revealed that transcription can be inhibited for up to 40 h of development in porcine embryos, produced either by activation, fertilization or SCNT, without detrimentally affecting their capacity to form a blastocyst and their average number of cells at this developmental stage. Importantly, inhibiting RNA synthesis during HDACi treatment resulted in SCNT blastocysts with a greater number of cells and more abundant transcripts for genes related to embryo genome activation on days 2, 3 and 4 of development, compared to SCNT embryos that were treated with HDACi only. In addition, concomitant inhibition of histone deacetylases and RNA synthesis promoted the full reprograming of somatic cells, as evidenced by the normal fetal and full-term development of SCNT embryos. This combined treatment may improve the efficiency of the genome-editing + SCNT platform in swine, which should be further tested by transferring more SCNT embryos and evaluating the health and growth performance of the cloned pigs.
Collapse
|
8
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
9
|
Xiang D, Jia B, Guo J, Shao Q, Hong Q, Wei H, Quan G, Wu G. Transcriptome Analysis of mRNAs and Long Non-Coding RNAs During Subsequent Embryo Development of Porcine Cloned Zygotes After Vitrification. Front Genet 2022; 12:753327. [PMID: 34976007 PMCID: PMC8718616 DOI: 10.3389/fgene.2021.753327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022] Open
Abstract
Cryopreservation of porcine cloned zygotes has important implications for biotechnology and biomedicine research; however, lower embryo developmental potential remains an urgent problem to be resolved. For exploring the sublethal cryodamages during embryo development, this study was designed to acquire the mRNA and long non-coding RNA (lncRNA) profiles of 2-cells, 4-cells and blastocysts derived from vitrified porcine cloned zygotes using transcriptome sequencing. We identified 167 differentially expressed (DE) mRNAs and 516 DE lncRNAs in 2-cell stage, 469 DE mRNAs and 565 lncRNAs in 4-cell stage, and 389 DE mRNAs and 816 DE lncRNAs in blastocyst stage. Functional enrichment analysis revealed that the DE mRNAs during embryo development were involved in many regulatory mechanisms related to cell cycle, cell proliferation, apoptosis, metabolism and others. Moreover, the target genes of DE lncRNAs in the three embryonic stages were also enriched in many key GO terms or pathways such as “defense response”, “linoleic acid metabolic process”, “embryonic axis specification”, “negative regulation of protein neddylation”, etc., In conclusion, the present study provided comprehensive transcriptomic data about mRNAs and lncRNAs for the vitrified porcine cloned zygotes during different developmental stages, which contributed to further understand the potential cryodamage mechanisms responsible for impaired embryo development.
Collapse
Affiliation(s)
- Decai Xiang
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qingyong Shao
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Hongjiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guoquan Wu
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
10
|
de Macedo MP, Glanzner WG, Gutierrez K, Bordignon V. Chromatin role in early programming of embryos. Anim Front 2021; 11:57-65. [PMID: 34934530 PMCID: PMC8683133 DOI: 10.1093/af/vfab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| |
Collapse
|
11
|
Sui Y, Peng S. A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons. Front Cell Dev Biol 2021; 9:618113. [PMID: 33644055 PMCID: PMC7905054 DOI: 10.3389/fcell.2021.618113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
In recent years, more and more evidence has emerged showing that changes in copy number variations (CNVs) correlated with the transcriptional level can be found during evolution, embryonic development, and oncogenesis. However, the underlying mechanisms remain largely unknown. The success of the induced pluripotent stem cell suggests that genome changes could bring about transformations in protein expression and cell status; conversely, genome alterations generated during embryonic development and senescence might also be the result of genome changes. With rapid developments in science and technology, evidence of changes in the genome affected by transcriptional level has gradually been revealed, and a rational and concrete explanation is needed. Given the preference of the HIV-1 genome to insert into transposons of genes with high transcriptional levels, we propose a mechanism based on retrotransposons facilitated by specific pre-mRNA splicing style and homologous recombination (HR) to explain changes in CNVs in the genome. This mechanism is similar to that of the group II intron that originated much earlier. Under this proposed mechanism, CNVs on genome are dynamically and spontaneously extended in a manner that is positively correlated with transcriptional level or contract as the cell divides during evolution, embryonic development, senescence, and oncogenesis, propelling alterations in them. Besides, this mechanism explains several critical puzzles in these processes. From evidence collected to date, it can be deduced that the message contained in genome is not just three-dimensional but will become four-dimensional, carrying more genetic information.
Collapse
Affiliation(s)
- Yunpeng Sui
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | | |
Collapse
|
12
|
Cai MZ, Wen SY, Wang XJ, Liu Y, Liang H. MYC Regulates PHF8, Which Promotes the Progression of Gastric Cancer by Suppressing miR-22-3p. Technol Cancer Res Treat 2020; 19:1533033820967472. [PMID: 33111613 PMCID: PMC7607725 DOI: 10.1177/1533033820967472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plant homeodomain finger protein 8 (PHF8) has been reported to participate in cancer development and metastasis of various types of tumors. However, little is known about the functional mechanism of PHF8 in gastric cancer (GC). This study aimed to explore the PHF8 expression pattern and function, and the role of the MYC/miRNA/PHF8 axis in GC. PHF8 expression was upregulated in GC tissues and cells as measured using quantitative reverse transcription polymerase chain reaction and western blotting. PHF8 knockdown suppressed the proliferation, migration, and invasion of GC cells, as determined using the CCK-8 assay and Transwell assay. MicroRNA-22-3p targeted PHF8, as verified by a dual-luciferase reporter assay. MYC upregulated the protein expression of PHF8 but had no effect on PHF8 mRNA expression. MYC regulates PHF8 by affecting the stability of miR-22-3p. We identified a novel MYC/miR-22-3p/PHF8 regulatory axis in GC. Therefore, PHF8 may provide a new therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Ming-Zhi Cai
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Shao-Yan Wen
- Comprehensive Surgery Department, Tianjin Cancer Hospital Airport Hospital, Tianjin, People's Republic of China
| | - Xue-Jun Wang
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yong Liu
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Han Liang
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Wang Z, Liu D, Xu B, Tian R, Zuo Y. Modular arrangements of sequence motifs determine the functional diversity of KDM proteins. Brief Bioinform 2020; 22:5912575. [PMID: 32987405 DOI: 10.1093/bib/bbaa215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Histone lysine demethylases (KDMs) play a vital role in regulating chromatin dynamics and transcription. KDM proteins are given modular activities by its sequence motifs with obvious roles division, which endow the complex and diverse functions. In our review, according to functional features, we classify sequence motifs into four classes: catalytic motifs, targeting motifs, regulatory motifs and potential motifs. JmjC, as the main catalytic motif, combines to Fe2+ and α-ketoglutarate by residues H-D/E-H and S-N-N/Y-K-N/Y-T/S. Targeting motifs make catalytic motifs recognize specific methylated lysines, such as PHD that helps KDM5 to demethylate H3K4me3. Regulatory motifs consist of a functional network. For example, NLS, Ser-rich, TPR and JmjN motifs regulate the nuclear localization. And interactions through the CW-type-C4H2C2-SWIRM are necessary to the demethylase activity of KDM1B. Additionally, many conservative domains that have potential functions but no deep exploration are reviewed for the first time. These conservative domains are usually amino acid-rich regions, which have great research value. The arrangements of four types of sequence motifs generate that KDM proteins diversify toward modular activities and biological functions. Finally, we draw a blueprint of functional mechanisms to discuss the modular activity of KDMs.
Collapse
Affiliation(s)
- Zerong Wang
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Dongyang Liu
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University. He is now studying for a master's degree at the institute of botany of the Chinese Academy of Sciences. His research interests include bioinformatics and computational genomics
| | - Baofang Xu
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Ruixia Tian
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University
| | - Yongchun Zuo
- State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life sciences, Inner Mongolia University. His research interests include bioinformatics and integration analysis of multiomics in cell reprogramming
| |
Collapse
|
14
|
Glanzner WG, Gutierrez K, Rissi VB, de Macedo MP, Lopez R, Currin L, Dicks N, Baldassarre H, Agellon LB, Bordignon V. Histone Lysine Demethylases KDM5B and KDM5C Modulate Genome Activation and Stability in Porcine Embryos. Front Cell Dev Biol 2020; 8:151. [PMID: 32211412 PMCID: PMC7076052 DOI: 10.3389/fcell.2020.00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
The lysine demethylases KDM5B and KDM5C are highly, but transiently, expressed in porcine embryos around the genome activation stage. Attenuation of KDM5B and KDM5C mRNA hampered embryo development to the blastocyst stage in fertilized, parthenogenetically activated and nuclear transfer embryos. While KDM5B attenuation increased H3K4me2-3 levels on D3 embryos and H3K4me1-2-3 on D5 embryos, KDM5C attenuation increased H3K9me1 on D3 embryos, and H3K9me1 and H3K4me1 on D5 embryos. The relative mRNA abundance of EIF1AX and EIF2A on D3 embryos, and the proportion of D4 embryos presenting a fluorescent signal for uridine incorporation were severely reduced in both KDM5B- and KDM5C-attenuated compared to control embryos, which indicate a delay in the initiation of the embryo transcriptional activity. Moreover, KDM5B and KDM5C attenuation affected DNA damage response and increased DNA double-strand breaks (DSBs), and decreased development of UV-irradiated embryos. Findings from this study revealed that both KDM5B and KDM5C are important regulators of early development in porcine embryos as their attenuation altered H3K4 and H3K9 methylation patterns, perturbed embryo genome activation, and decreased DNA damage repair capacity.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Rosalba Lopez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|