1
|
Sundaresan S, Rajapriya P, Lavanya SK. Aging and cancer: Clinical role of tumor markers in the geriatric population (Review). MEDICINE INTERNATIONAL 2024; 4:21. [PMID: 39640494 PMCID: PMC11618985 DOI: 10.3892/mi.2024.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/15/2024] [Indexed: 12/07/2024]
Abstract
Aging, with the progressive deterioration and functional decline of several organ systems, is highly heterogeneous for both between and within individuals. Tumor markers are widely used in clinical practice as a screening test for individuals >50 years of age. More specifically, caring for elderly patients is a public health concern, given the incidence of cancer and its related mortality and morbidity. A multidisciplinary diagnostic procedure known as a geriatric assessment is capable of identifying functional, psychological and physiological issues that are missed by standard evaluation. The present review focuses on cancers affecting the geriatric population, highlights current opportunities and challenges, and highlights the unmet need for clinically relevant tumor markers in elderly patients with cancer. A comprehensive geriatric examination, including a biological assessment, still requires conveniently available tumor markers and their levels in older populations in order to forecast deterioration or loss of functional balance. These tumor indicators ought to make it possible to track patients using other outcomes, such overall survival and functional impairment. Despite the notable progress made in the understanding of human biology, the mechanisms and networks underlying aging remain largely unknown. In addition, as elderly patients are a highly heterogeneous population, age-related changes cannot be distinguished solely by chronological age. Strong clinical studies, well-established protocols and meta-analyses may contribute to the better utilization of tumor biomarkers in the elderly population. Hence, the present review addresses the effects of aging on tumor markers and the usefulness of tumor marker values for the geriatric population.
Collapse
Affiliation(s)
- Sivapatham Sundaresan
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu 603203, India
| | - Palanirasu Rajapriya
- Department of Liver Sciences, Rela Institute of Medical Sciences, Chennai, Tamil Nadu 600044, India
| | - Selvaraj Kaveri Lavanya
- Department of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
2
|
Johnson JA, Moore BJ, Syrnioti G, Eden CM, Wright D, Newman LA. Landmark Series: The Cancer Genome Atlas and the Study of Breast Cancer Disparities. Ann Surg Oncol 2023; 30:6427-6440. [PMID: 37587359 DOI: 10.1245/s10434-023-13866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/24/2023] [Indexed: 08/18/2023]
Abstract
Race-related variation in breast cancer incidence and mortality are well-documented in the United States. The effect of genetic ancestry on disparities in tumor genomics, risk factors, treatment, and outcomes of breast cancer is less understood. The Cancer Genome Atlas (TCGA) is a publicly available resource that has allowed for the recent emergence of genome analysis research seeking to characterize tumor DNA and protein expression by ancestry as well as the social construction of race and ethnicity. Results from TCGA based studies support previous clinical evidence that demonstrates that American women with African ancestry are more likely to be afflicted with breast cancers featuring aggressive biology and poorer outcomes compared with women with other backgrounds. Data from TCGA based studies suggest that Asian women have tumors with favorable immune microenvironments and may experience better disease-free survival compared with white Americans. TCGA contains limited data on Hispanic/Latinx patients due to small sample size. Overall, TCGA provides important opportunities to define the molecular, biologic, and germline genetic factors that contribute to breast cancer disparities.
Collapse
Affiliation(s)
- Josh A Johnson
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA
| | | | - Georgia Syrnioti
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA
| | - Claire M Eden
- Department of Surgery, New York Presbyterian Queens, Weill Cornell Medicine, Flushing, NY, USA
| | - Drew Wright
- Samuel J. Wood Library, Weill Cornell Medicine, New York, NY, USA
| | - Lisa A Newman
- Department of Surgery, New York Presbyterian, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
D’Agostino C, Parisis D, Chivasso C, Hajiabbas M, Soyfoo MS, Delporte C. Aquaporin-5 Dynamic Regulation. Int J Mol Sci 2023; 24:ijms24031889. [PMID: 36768212 PMCID: PMC9915196 DOI: 10.3390/ijms24031889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.
Collapse
Affiliation(s)
- Claudia D’Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Shahnawaz Soyfoo
- Rheumatology Department, CUB Hôpital Erasme, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
4
|
Wang F, Li Y, Li Z, Zou Z, Lu Y, Xu C, Zhao Z, Wang H, Wang Y, Guo S, Jin L, Wang J, Li Q, Jiang G, Xia F, Shen B, Wu J. Prognostic value of GPC5 polymorphism rs2352028 and clinical characteristics in Chinese lung cancer patients. Future Oncol 2022; 18:3165-3177. [PMID: 36165234 DOI: 10.2217/fon-2022-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: GPC5 rs2352028 is associated with the risk of lung cancer, but its relationship with lung cancer prognosis is unclear. Materials & methods: The authors collected blood samples from 888 patients with lung cancer and used a Cox proportional hazards model to analyze the association between prognosis and GPC5 polymorphism rs2352028. Results: GPC5 rs2352028 C > T was associated with a better prognosis. Patients with CT genotype had longer overall survival than those with CC genotype. Additionally, older and early-stage patients with CT + TT genotype had a lower risk of death than those with CC genotype. Conclusion: GPC5 rs2352028 C > T may play a protective role in patients with lung cancer and GPC5 rs2352028 may be a potential genetic marker for lung cancer prognosis.
Collapse
Affiliation(s)
- Fan Wang
- Company 1 of Basic Medical Science, Navy Military Medical University, Shanghai, 200433, China
| | - Yutao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhengxing Li
- Company 6 of Basic Medical Science, Navy Military Medical University, Shanghai, 200433, China
| | - Zixiu Zou
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yongming Lu
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, 571199, China
| | - Chang Xu
- Clinical College of Xiangnan University, Chenzhou, 423000, China
| | - ZongXu Zhao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, 571199, China
| | - HuaiZhou Wang
- Department of Laboratory Diagnosis, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, 200433, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shicheng Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, TongJi University, Shanghai, 200120, China
| | - GengXi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, 200433, China
| | - Fan Xia
- Department of Respiratory Disease, Navy 905 Hospital, Shanghai, 200235, China
| | - Bo Shen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Junjie Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Pulmonary and Critical Care Medicine, Shanghai Geriatric Medical Center, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
5
|
Hermawan A, Putri H. Bioinformatics analysis reveals the potential target of rosiglitazone as an antiangiogenic agent for breast cancer therapy. BMC Genom Data 2022; 23:72. [PMID: 36114448 PMCID: PMC9482259 DOI: 10.1186/s12863-022-01086-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Background Several studies have demonstrated the antitumor activity of rosiglitazone (RGZ) in cancer cells, including breast cancer cells. However, the molecular targets of RGZ in the inhibition of angiogenesis in breast cancer cells remain unclear. This study aimed to explore the potential targets of RGZ in inhibiting breast cancer angiogenesis using bioinformatics-based analysis. Results Venn diagram analysis revealed 29 TR proteins. KEGG pathway enrichment analysis demonstrated that TR regulated the adipocytokine, AMPK, and PPAR signaling pathways. Oncoprint analysis showed genetic alterations in FABP4 (14%), ADIPOQ (2.9%), PPARG (2.8%), PPARGC1A (1.5%), CD36 (1.7%), and CREBBP (11%) in patients with breast cancer in a TCGA study. The mRNA levels of FABP4, ADIPOQ, PPARG, CD36, and PPARGC1A were significantly lower in patients with breast cancer than in those without breast cancer. Analysis of gene expression using bc-GenExMiner showed that the mRNA levels of FABP, ADIPOQ, PPARG, CD36, PPARGC1A, and CREBBP were significantly lower in basal-like and triple-negative breast cancer (TNBC) cells than in non-basal-like and non-TNBC cells. In general, the protein levels of these genes were low, except for that of CREBBP. Patients with breast cancer who had low mRNA levels of FABP4, ADIPOQ, PPARG, and PPARGC1A had lower overall survival rates than those with high mRNA levels, which was supported by the overall survival related to DNA methylation. Correlation analysis of immune cell infiltration with TR showed a correlation between TR and immune cell infiltration, highlighting the potential of RGZ for immunotherapy. Conclusion This study explored the potential targets of RGZ as antiangiogenic agents in breast cancer therapy and highlighted FABP4, ADIPOQ, PPARG, PPARGC1A, CD36, and CREBBP as potential targets of RGZ. These findings require further validation to explore the potential of RGZ as an antiangiogenic agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01086-2. Recent studies have focused on the development of indirect angiogenesis inhibitors. Bioinformatics-based identification of potential rosiglitazone target genes to inhibit breast cancer angiogenesis. FABP4, ADIPOQ, PPARG, PPARGC1A, CD36, and CREBBP are potential targets of rosiglitazone.
Collapse
|
6
|
Wu Y, Zhang X, Wei X, Feng H, Hu B, Deng Z, Liu B, Luan Y, Ruan Y, Liu X, Liu Z, Liu J, Wang T. Development of an Individualized Ubiquitin Prognostic Signature for Clear Cell Renal Cell Carcinoma. Front Cell Dev Biol 2021; 9:684643. [PMID: 34239875 PMCID: PMC8258262 DOI: 10.3389/fcell.2021.684643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common tumor type in genitourinary system and has a poor prognosis. Ubiquitin dependent modification systems have been reported in a variety of malignancies and have influenced tumor genesis and progression. However, the molecular characteristics and prognostic value of ubiquitin in ccRCC have not been systematically reported. In our study, 204 differentially expressed ubiquitin related genes (URGs) were identified from The Cancer Genome Atlas (TCGA) cohort, including 141 up-regulated and 63 down-regulated URGs. A total of seven prognostic related URGs (CDCA3, CHFR, CORO6, RNF175, TRIM72, VAV3, and WDR72) were identified by Cox regression analysis of differential URGs and used to construct a prognostic signature. Kaplan-Meier analysis confirmed that high-risk patients had a worse prognosis (P = 1.11e-16), and the predicted area under the receiver operating characteristic (ROC) curves were 0.735 at 1 year, 0.702 at 3 years, and 0.744 at 5 years, showing good prediction accuracy. Stratified analysis showed that the URGs-based prognostic signature could be used to evaluate tumor progression in ccRCC. Further analysis confirmed that the signature is an independent prognostic factor related to the prognosis of ccRCC patients, which may help to reveal the molecular mechanism of ccRCC and provide potential diagnostic and prognostic markers for ccRCC.
Collapse
Affiliation(s)
- Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- School of Health Sciences, Wuhan University, Wuhan, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Liu Z, Zhang Y, Dang Q, Wu K, Jiao D, Li Z, Sun Z, Han X. Genomic Alteration Characterization in Colorectal Cancer Identifies a Prognostic and Metastasis Biomarker: FAM83A|IDO1. Front Oncol 2021; 11:632430. [PMID: 33959500 PMCID: PMC8093579 DOI: 10.3389/fonc.2021.632430] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Genomic alterations constitute crucial elements of colorectal cancer (CRC). However, a comprehensive understanding of CRC genomic alterations from a global perspective is lacking. In this study, a total of 2,778 patients in 15 public datasets were enrolled. Tissues and clinical information of 30 patients were also collected. We successfully identified two distinct mutation signature clusters (MSC) featured by massive mutations and dominant somatic copy number alterations (SCNA), respectively. MSC-1 was associated with defective DNA mismatch repair, exhibiting more frequent mutations such as ATM, BRAF, and SMAD4. The mutational co-occurrences of BRAF-HMCN and DNAH17-MDN1 as well as the methylation silence event of MLH-1 were only found in MSC-1. MSC-2 was linked to the carcinogenic process of age and tobacco chewing habit, exhibiting dominant SCNA such as MYC (8q24.21) and PTEN (10q23.31) deletion as well as CCND3 (6p21.1) and ERBB2 (17q12) amplification. MSC-1 displayed higher immunogenicity and immune infiltration. MSC-2 had better prognosis and significant stromal activation. Based on the two subtypes, we identified and validated the expression relationship of FAM83A and IDO1 as a robust biomarker for prognosis and distant metastasis of CRC in 15 independent cohorts and qRT-PCR data from 30 samples. These results advance precise treatment and clinical management in CRC.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kunpeng Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
8
|
Wang JG, Jian WJ, Li Y, Zhang J. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR-200b/JAZF1 axis. Kaohsiung J Med Sci 2021; 37:572-582. [PMID: 33728753 DOI: 10.1002/kjm2.12371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/16/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Nobiletin is a polymethoxylated flavone present in citrus fruits, which has been reported to have inhibitory effects on tumorigenesis of cancers. However, the biological function of nobiletin in breast cancer (BC) is largely unknown. To investigate the effect of nobiletin on growth of BC cells, the cell viability of BC was measured by MTT assay. In addition, gene and protein expressions were detected by qRT-PCR and western blot, respectively. The apoptosis and pyroptosis of BC cells were tested by flow cytometry. Finally, the correlation between miR-200b and JAZF1 was detected by dual luciferase report. The data indicated that nobiletin inhibited the proliferation of BC cells in a dose-dependent manner. Moreover, miR-200b mimics-induced pyroptosis of BC cells was further increased by nobiletin. Meanwhile, JAZF1 was found to be the target of miR-200b. Moreover, nobiletin induced apoptosis and pyroptosis of BC cells via miR-200b/JAZF1/NF-κB axis. In conclusion, nobiletin inhibited the tumorigenesis of BC via regulation of miR-200b/JAZF1 axis. Thus, nobiletin might serve as a new agent for the treatment of BC.
Collapse
Affiliation(s)
- Ji-Guo Wang
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Wen-Jing Jian
- Department of Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Yang Li
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jing Zhang
- Department of Oncology, Shenzhen Baoan Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|