1
|
Balogh G, Jorge N, Dupain C, Kamal M, Servant N, Le Tourneau C, Stadler PF, Bernhart SH. TREMSUCS-TCGA - an integrated workflow for the identification of biomarkers for treatment success. J Integr Bioinform 2024; 21:jib-2024-0031. [PMID: 39654143 PMCID: PMC11698617 DOI: 10.1515/jib-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/18/2024] [Indexed: 01/06/2025] Open
Abstract
Many publicly available databases provide disease related data, that makes it possible to link genomic data to medical and meta-data. The cancer genome atlas (TCGA), for example, compiles tens of thousand of datasets covering a wide array of cancer types. Here we introduce an interactive and highly automatized TCGA-based workflow that links and analyses epigenomic and transcriptomic data with treatment and survival data in order to identify possible biomarkers that indicate treatment success. TREMSUCS-TCGA is flexible with respect to type of cancer and treatment and provides standard methods for differential expression analysis or DMR detection. Furthermore, it makes it possible to examine several cancer types together in a pan-cancer type approach. Parallelisation and reproducibility of all steps is ensured with the workflowmanagement system Snakemake. TREMSUCS-TCGA produces a comprehensive single report file which holds all relevant results in descriptive and tabular form that can be explored in an interactive manner. As a showcase application we describe a comprehensive analysis of the available data for the combination of patients with squamous cell carcinomas of head and neck, cervix and lung treated with cisplatin, carboplatin and the combination of carboplatin and paclitaxel. The best ranked biomarker candidates are discussed in the light of the existing literature, indicating plausible causal relationships to the relevant cancer entities.
Collapse
Affiliation(s)
- Gabor Balogh
- Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
| | - Natasha Jorge
- Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
| | - Célia Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- Inserm U900 Research Unit, Saint Cloud, France
- Université Paris-Saclay, 91190Gif-sur-Yvette, France
| | - Peter F. Stadler
- Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Max-Planck-Institute for Mathematics in Sciences, Inselstraße 22, D-04109Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University Leipzig, Härtelstrasse 16-18, D-04107Leipzig, Germany
- Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria
- Center for RNA in Technology and Health (RTH), Univ. Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá CO-111321, Colombia
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA
| | - Stephan H. Bernhart
- Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
- Bioinformatics Group, Institute of Computer Science, Leipzig University, Härtelstraße 16-18, D-04107Leipzig, Germany
| |
Collapse
|
2
|
Shao W, Feng Y, Huang J, Li T, Gao S, Yang Y, Li D, Yang Z, Yao Z. Interaction of ncRNAs and the PI3K/AKT/mTOR pathway: Implications for osteosarcoma. Open Life Sci 2024; 19:20220936. [PMID: 39119480 PMCID: PMC11306965 DOI: 10.1515/biol-2022-0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, and is characterized by high heterogeneity, high malignancy, easy metastasis, and poor prognosis. Recurrence, metastasis, and multidrug resistance are the main problems that limit the therapeutic effect and prognosis of OS. PI3K/AKT/mTOR signaling pathway is often abnormally activated in OS tissues and cells, which promotes the rapid development, metastasis, and drug sensitivity of OS. Emerging evidence has revealed new insights into tumorigenesis through the interaction between the PI3K/AKT/mTOR pathway and non-coding RNAs (ncRNAs). Therefore, we reviewed the interactions between the PI3K/AKT/mTOR pathway and ncRNAs and their implication in OS. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Weilin Shao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Jin Huang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tingyu Li
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shengguai Gao
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yihao Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| |
Collapse
|
3
|
Liao X, Wei R, Zhou J, Wu K, Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front Mol Biosci 2024; 11:1327459. [PMID: 38516191 PMCID: PMC10955361 DOI: 10.3389/fmolb.2024.1327459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Osteosarcoma (OS) is a highly aggressive and lethal malignant bone tumor that primarily afflicts children, adolescents, and young adults. However, the molecular mechanisms underlying OS pathogenesis remain obscure. Mounting evidence implicates dysregulated long non-coding RNAs (lncRNAs) in tumorigenesis and progression. These lncRNAs play a pivotal role in modulating gene expression at diverse epigenetic, transcriptional, and post-transcriptional levels. Uncovering the roles of aberrant lncRNAs would provide new insights into OS pathogenesis and novel tools for its early diagnosis and treatment. In this review, we summarize the significance of lncRNAs in controlling signaling pathways implicated in OS development, including the Wnt/β-catenin, PI3K/AKT/mTOR, NF-κB, Notch, Hippo, and HIF-1α. Moreover, we discuss the multifaceted contributions of lncRNAs to drug resistance in OS, as well as their potential to serve as biomarkers and therapeutic targets. This review aims to encourage further research into lncRNA field and the development of more effective therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Xun Liao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Tan SC, Hushmandi K. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract 2023; 251:154902. [PMID: 37922723 DOI: 10.1016/j.prp.2023.154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
Collapse
Affiliation(s)
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bahonar
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Nakhaee
- Medical School, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Jiang T, Zeng Q, He J. Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Transl Cancer Res 2023; 12:2932-2945. [PMID: 37969388 PMCID: PMC10643954 DOI: 10.21037/tcr-23-1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 11/17/2023]
Abstract
Alkaline phosphatase (ALP) is a group of enzymes that catalyze hydrolysis of phosphate esters at an alkaline pH, resulting in the generation of inorganic phosphate. These enzymes are widely distributed, and their activity is found in various tissues including bone, liver, intestine, and placenta. However, abnormalities in ALP expression and activity have been observed in certain types of cancer. In some cases, elevated serum levels of ALP are observed in patients with liver and bone metastasis. In other cases, increased levels of ALP have been observed in patients with pancreatic and lung cancer. On the other hand, low expression of ALP has also been associated with poor prognosis in patients with certain types of tumors, including colorectal cancer (CRC), breast cancer, and non-small cell lung cancer (NSCLC). In these cases, low ALP activity may be associated with decreased differentiation of cancer cells and increased cancer cell proliferation. Overall, the role of ALP in cancer is complex and context-dependent. This article reviews application progress of ALP in cancer, and we hypothesize that ALP might be a potential tumor biomarker, combined detection of aspartate aminotransferase (AST)/alanine aminotransferase (ALT), bone-specific alkaline phosphatase (BSAP), carbohydrate antigen 19-9 (CA 19-9), lactate dehydrogenase (LDH) and ALP isozymes levels can be used for more accurate diagnosis of a particular tumor. Further research is needed to better understand the mechanisms underlying ALP dysregulation in cancer and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Zhao C, Tong L, Liu B, Qi F, Zhang Z, Guo Y, Liu Y, Wang Y, Zhang L, Lu B, Li B, Zhang T. Plasma hepatocyte growth factor as a noninvasive biomarker in small cell lung cancer. BMC Cancer 2023; 23:973. [PMID: 37828456 PMCID: PMC10568809 DOI: 10.1186/s12885-023-10995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/22/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) is a peptide-containing multifunctional cytokine, which is overexpressed and/or activated in multiple malignancies and is reported to be associated with tumor development and inferior survival. At present, the role of HGF in small cell lung cancer (SCLC) has not been fully explored yet. MATERIALS AND METHODS The expression of HGF and its value in predicting survival in SCLC were explored from GEO database and in pan-cancer analysis. Furthermore, we detected the expression of HGF using tumor tissue and paired plasma samples from a validation cohort of 71 SCLC patients at our institute. Correlation between tumor and plasma HGF expression and the prognostic values were analyzed. RESULTS GEO database analysis revealed that tumor tissue had lower HGF expression than paired normal tissue in SCLC. At our institute, immunohistochemical staining showed negative expression of HGF in tumor tissue of SCLC at our institute (47/47, 100%). The average baseline plasma HGF was 1.28 (range,0.42-4.35) ng/ml. However, plasma HGF was higher in SCLC patients with patients with N3, M1, liver metastasis (LM) and bone metastasis (BM) disease compared with those N0 - 2 (1.25 vs. 1.75 ng/mL, P = 0.000), M0 (1.26 vs. 1.63 ng/mL, P = 0.003), non-LM (1.32 vs. 2.06 ng/mL, P = 0.009), and non-BM (1.35 vs. 1.77 ng/mL, P = 0.047), respectively. Multivariate analysis revealed plasma HGF was an independent predictor for LM and prognostic factor of OS. CONCLUSION Our results revealed that plasma HGF rather than tumor HGF exhibited a potential role in predicting metastasis and survival in SCLC. Plasma HGF might be used as a non-invasive detecting and monitoring tool for SCLC.
Collapse
Affiliation(s)
- Cong Zhao
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Li Tong
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Liu
- Cancer research center, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Fei Qi
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Zhiyun Zhang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Cancer research center, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Yi Guo
- Emergency Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yanxia Liu
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Cancer research center, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Ying Wang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Lina Zhang
- Cancer research center, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Baohua Lu
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Baolan Li
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Tongmei Zhang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
7
|
Xiao X, Liu M, Xie S, Liu C, Huang X, Huang X. Long non-coding HOXA-AS3 contributes to osteosarcoma progression through the miR-1286/TEAD1 axis. J Orthop Surg Res 2023; 18:730. [PMID: 37752588 PMCID: PMC10523635 DOI: 10.1186/s13018-023-04214-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Long non-coding RNA (lncRNA) HOXA cluster antisense RNA 3 (HOXA-AS3) regulates the progression of several types of human malignancy. However, the role and potential mechanism of HOXA-AS3 in osteosarcoma (OS) remain unknown. In this study, upregulation of HOXA-AS3 was observed in OS tissues and cell lines and associated with poor clinical outcomes. Silencing of HOXA-AS3 significantly inhibited the proliferation, migration and invasion of OS cells in vitro and suppressed the tumorigenesis of OS cells in vivo. Furthermore, knockdown of HOXA-AS3 inhibited the proliferation and migration of human umbilical vein endothelial cells (HUVECs) and epithelial-to-mesenchymal transition (EMT) in OS. Further investigation of this mechanism revealed that HOXA-AS3 could directly upregulate the expression of TEAD1 via its competing endogenous RNA (ceRNA) activity on miR-1286. This study clarified the oncogenic roles of the HOXA-AS3/miR-1286/TEAD1 axis in OS progression, suggesting a novel therapeutic target for OS.
Collapse
Affiliation(s)
- Xiangjun Xiao
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Mingjiang Liu
- Department of Orthopedic Trauma and Hand Surgery, Changsha Central Hospital Affiliated to Nanhua University, NO. 161 Shaoshan Nan Road, Changsha, 410018, China.
| | - Songlin Xie
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Changxiong Liu
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Xinfeng Huang
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| | - Xiongjie Huang
- Department of Hand and Foot Surgery, Nanhua Hospital Affiliated to Nanhua University, Hengyang, 421002, China
| |
Collapse
|
8
|
Twenhafel L, Moreno D, Punt T, Kinney M, Ryznar R. Epigenetic Changes Associated with Osteosarcoma: A Comprehensive Review. Cells 2023; 12:1595. [PMID: 37371065 DOI: 10.3390/cells12121595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. While clinical outcomes have improved, the 5-year survival rate is only around 60% if discovered early and can require debilitating treatments, such as amputations. A better understanding of the disease could lead to better clinical outcomes for patients with osteosarcoma. One promising avenue of osteosarcoma research is in the field of epigenetics. This research investigates changes in genetic expression that occur above the genome rather than in the genetic code itself. The epigenetics of osteosarcoma is an active area of research that is still not fully understood. In a narrative review, we examine recent advances in the epigenetics of osteosarcoma by reporting biomarkers of DNA methylation, histone modifications, and non-coding RNA associated with disease progression. We also show how cancer tumor epigenetic profiles are being used to predict and improve patient outcomes. The papers in this review cover a large range of epigenetic target genes and pathways that modulate many aspects of osteosarcoma, including but not limited to metastases and chemotherapy resistance. Ultimately, this review will shed light on the recent advances in the epigenetics of osteosarcoma and illustrate the clinical benefits of this field of research.
Collapse
Affiliation(s)
- Luke Twenhafel
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - DiAnna Moreno
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Trista Punt
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Madeline Kinney
- College of Osteopathic Medicine, Rocky Vista University, Englewood, CO 80112, USA
| | - Rebecca Ryznar
- Department of Biomedical Sciences, Rocky Vista University, Englewood, CO 80112, USA
| |
Collapse
|
9
|
Xiaotong S, Xiao L, Shiyu L, Zhiguo B, Chunyang F, Jianguo L. LncRNAs could play a vital role in osteosarcoma treatment: Inhibiting osteosarcoma progression and improving chemotherapy resistance. Front Genet 2023; 13:1022155. [PMID: 36726721 PMCID: PMC9885180 DOI: 10.3389/fgene.2022.1022155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common primary solid malignant tumors in orthopedics, and its main clinical treatments are surgery and chemotherapy. However, a wide surgical resection range, functional reconstruction of postoperative limbs, and chemotherapy resistance remain as challenges for patients and orthopedists. To address these problems, the discovery of new effective conservative treatments is important. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides in length that do not encode proteins. Researchers have recently found that long non-coding RNAs are closely associated with the development of OS, indicating their potentially vital role in new treatment methods for OS. This review presents new findings regarding the association of lncRNAs with OS and summarizes potential clinical applications of OS with lncRNAs, including the downregulation of oncogenic lncRNAs, upregulation of tumor suppressive lncRNAs, and lncRNAs-based treatment to improve chemotherapy resistance. We hope these potential methods will be translated into clinical applications and greatly reduce patient suffering.
Collapse
Affiliation(s)
- Shi Xiaotong
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Li Xiao
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Liao Shiyu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Bi Zhiguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Chunyang
- Department of Obstetrics and Gynecology, Renji Hospital of Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| | - Liu Jianguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| |
Collapse
|
10
|
Long Noncoding RNAs and Circular RNAs Regulate AKT and Its Effectors to Control Cell Functions of Cancer Cells. Cells 2022; 11:cells11192940. [PMID: 36230902 PMCID: PMC9563963 DOI: 10.3390/cells11192940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
AKT serine-threonine kinase (AKT) and its effectors are essential for maintaining cell proliferation, apoptosis, autophagy, endoplasmic reticulum (ER) stress, mitochondrial morphogenesis (fission/fusion), ferroptosis, necroptosis, DNA damage response (damage and repair), senescence, and migration of cancer cells. Several lncRNAs and circRNAs also regulate the expression of these functions by numerous pathways. However, the impact on cell functions by lncRNAs and circRNAs regulating AKT and its effectors is poorly understood. This review provides comprehensive information about the relationship of lncRNAs and circRNAs with AKT on the cell functions of cancer cells. the roles of several lncRNAs and circRNAs acting on AKT effectors, such as FOXO, mTORC1/2, S6K1/2, 4EBP1, SREBP, and HIF are explored. To further validate the relationship between AKT, AKT effectors, lncRNAs, and circRNAs, more predicted AKT- and AKT effector-targeting lncRNAs and circRNAs were retrieved from the LncTarD and circBase databases. Consistently, using an in-depth literature survey, these AKT- and AKT effector-targeting database lncRNAs and circRNAs were related to cell functions. Therefore, some lncRNAs and circRNAs can regulate several cell functions through modulating AKT and AKT effectors. This review provides insights into a comprehensive network of AKT and AKT effectors connecting to lncRNAs and circRNAs in the regulation of cancer cell functions.
Collapse
|