1
|
Ziemann M, Abeysooriya M, Bora A, Lamon S, Kasu MS, Norris MW, Wong YT, Craig JM. Direction-aware functional class scoring enrichment analysis of infinium DNA methylation data. Epigenetics 2024; 19:2375022. [PMID: 38967555 PMCID: PMC11229754 DOI: 10.1080/15592294.2024.2375022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Infinium Methylation BeadChip arrays remain one of the most popular platforms for epigenome-wide association studies, but tools for downstream pathway analysis have their limitations. Functional class scoring (FCS) is a group of pathway enrichment techniques that involve the ranking of genes and evaluation of their collective regulation in biological systems, but the implementations described for Infinium methylation array data do not retain direction information, which is important for mechanistic understanding of genomic regulation. Here, we evaluate several candidate FCS methods that retain directional information. According to simulation results, the best-performing method involves the mean aggregation of probe limma t-statistics by gene followed by a rank-ANOVA enrichment test using the mitch package. This method, which we call 'LAM,' outperformed an existing over-representation analysis method in simulations, and showed higher sensitivity and robustness in an analysis of real lung tumour-normal paired datasets. Using matched RNA-seq data, we examine the relationship of methylation differences at promoters and gene bodies with RNA expression at the level of pathways in lung cancer. To demonstrate the utility of our approach, we apply it to three other contexts where public data were available. First, we examine the differential pathway methylation associated with chronological age. Second, we investigate pathway methylation differences in infants conceived with in vitro fertilization. Lastly, we analyse differential pathway methylation in 19 disease states, identifying hundreds of novel associations. These results show LAM is a powerful method for the detection of differential pathway methylation complementing existing methods. A reproducible vignette is provided to illustrate how to implement this method.
Collapse
Affiliation(s)
- Mark Ziemann
- Bioinformatics Working Group, Burnet Institute, Melbourne, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Mandhri Abeysooriya
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia
| | - Anusuiya Bora
- Bioinformatics Working Group, Burnet Institute, Melbourne, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia
| | - Mary Sravya Kasu
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Mitchell W. Norris
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Yen Ting Wong
- School of Medicine, Deakin University, Geelong, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Jeffrey M. Craig
- School of Medicine, Deakin University, Geelong, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| |
Collapse
|
2
|
Alves VC, Carro E, Figueiro-Silva J. Unveiling DNA methylation in Alzheimer's disease: a review of array-based human brain studies. Neural Regen Res 2024; 19:2365-2376. [PMID: 38526273 PMCID: PMC11090417 DOI: 10.4103/1673-5374.393106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/05/2023] [Indexed: 03/26/2024] Open
Abstract
The intricacies of Alzheimer's disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms, particularly DNA methylation. This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer's disease neuropathology. The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer's disease progression. The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus. Notably, ANK1 hypermethylation, a protein implicated in neurofibrillary tangle formation, was recurrently identified in the entorhinal cortex. Further, the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3, RHBDF2, and MCF2L, potentially influencing neuroinflammatory processes. The complex role of BIN1 in late-onset Alzheimer's disease is underscored by its association with altered methylation patterns. Despite the disparities across studies, these findings highlight the intricate interplay between epigenetic modifications and Alzheimer's disease pathology. Future research efforts should address methodological variations, incorporate diverse cohorts, and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer's disease progression.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
- Neurotraumatology and Subarachnoid Hemorrhage Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Eva Carro
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
El-Hossary NM, El-Desouky MA, Sabry GM, Omar MF, Ali MY, Elzayat MG, Hassan RE, Mohamed RH, Rashidi FB. A new insight of blood vs. buccal DNA methylation in the forensic identification of monozygotic triplets. Forensic Sci Int 2024; 364:112247. [PMID: 39405818 DOI: 10.1016/j.forsciint.2024.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
The case of the monozygotic (MZ) twin as a suspect demonstrates a practical problem in forensic casework. As the MZ twins are genetically identical, they share the same short tandem repeat (STR) profile. Many studies showed that older MZ twins have significant differences in overall content and genomic distribution of methylation between them. However, studies addressing the investigation of epigenetic MZ triplet differentiation in various forensic reference materials are lacking. Here, one triplet set of Egyptian MZ twins was used as an analog to a forensic case. The genome-wide methylation analysis was performed via the new Human Methylation EPIC BeadChip array. Following normalization methods, potential differentially methylated positions (DMPs) were discovered. This resulted in the detection of 24 potential DMPs in reference-type blood DNA and 11 potential DMPs in reference-type buccal DNA. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to show the associated biological functions. Our findings revealed that the 35 potential DMPs were enriched in 283 significant GO terms. These terms are mainly enriched in the immune system. Overall, this study demonstrates the general feasibility of epigenetic MZ triplet differentiation in the forensic context and highlights that some potential DMPs identified in blood DNA were not informative in buccal DNA. This is due to various reasons, including the tissue specificity of DNA methylation.
Collapse
Affiliation(s)
- Nancy M El-Hossary
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Crime scene investigation (CSI) Laboratory, Ministry of Interior, Cairo 11517, Egypt
| | - Mohamed A El-Desouky
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Mohamed F Omar
- Crime scene investigation (CSI) Laboratory, Ministry of Interior, Cairo 11517, Egypt; Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Y Ali
- Genomics program Department of Basic Research, Children's Cancer Hospital, Cairo 11562, Egypt; Clinical pharmacy Department, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt
| | - Mariam G Elzayat
- Genomics program Department of Basic Research, Children's Cancer Hospital, Cairo 11562, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
4
|
Ferreira RS, Assis RIF, Racca F, Bontempi AC, da Silva RA, Wiench M, Andia DC. Analyzes In Silico Indicate the lncRNAs MIR31HG and LINC00939 as Possible Epigenetic Inhibitors of the Osteogenic Differentiation in PDLCs. Genes (Basel) 2023; 14:1649. [PMID: 37628700 PMCID: PMC10454380 DOI: 10.3390/genes14081649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chromatin conformation, DNA methylation pattern, transcriptional profile, and non-coding RNAs (ncRNAs) interactions constitute an epigenetic pattern that influences the cellular phenotypic commitment and impacts the clinical outcomes in regenerative therapies. Here, we investigated the epigenetic landscape of the SP7 transcriptor factor (SP7) and Distal-Less Homeobox 4 (DLX4) osteoblastic transcription factors (TFs), in human periodontal ligament mesenchymal cells (PDLCs) with low (l-PDLCs) and high (h-PDLCs) osteogenic potential. Chromatin accessibility (ATAC-seq), genome DNA methylation (Methylome), and RNA sequencing (RNA-seq) assays were performed in l- and h-PDLCs, cultured at 10 days in non-induced (DMEM) and osteogenic (OM) medium in vitro. Data were processed in HOMER, Genome Studio, and edgeR programs, and metadata was analyzed by online bioinformatics tools and in R and Python environments. ATAC-seq analyses showed the TFs genomic regions are more accessible in l-PDLCs than in h-PDLCs. In Methylome analyses, the TFs presented similar average methylation intensities (AMIs), without differently methylated probes (DMPs) between l- and h-PDLCs; in addition, there were no differences in the expression profiles of TFs signaling pathways. Interestingly, we identified the long non-coding RNAs (lncRNAs), MIR31HG and LINC00939, as upregulated in l-PDLCs, in both DMEM and OM. In the following analysis, the web-based prediction tool LncRRIsearch predicted RNA:RNA base-pairing interactions between SP7, DLX4, MIR31HG, and LINC00939 transcripts. The machine learning program TriplexFPP predicted DNA:RNA triplex-forming potential for the SP7 DNA site and for one of the LINC00939 transcripts (ENST00000502479). PCR data confirmed the upregulation of MIR31HG and LINC00939 transcripts in l-PDLCs (× h-PDLCs) in both DMEM and OM (p < 0.05); conversely, SP7 and DLX4 were downregulated, confirming those results observed in the RNA-Seq analysis. Together, these results indicate the lncRNAs MIR31HG and LINC00939 as possible epigenetic inhibitors of the osteogenic differentiation in PDLCs by (post)transcriptional and translational repression of the SP7 and DLX4 TFs.
Collapse
Affiliation(s)
- Rogério S. Ferreira
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| | - Rahyza I. F. Assis
- Department of Clinical Dentistry, Federal University of Espírito Santo, Vitória 29043-910, ES, Brazil
| | - Francesca Racca
- Periodontology Department, The Ohio State University College of Dentistry, Columbus, OH 43210-1267, USA;
| | - Ana Carolina Bontempi
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| | - Rodrigo A. da Silva
- Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, SP, Brazil;
| | - Malgorzata Wiench
- School of Dentistry, Institute of Clinical Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B5 7EG, UK
| | - Denise C. Andia
- School of Dentistry, Health Science Institute, Paulista University, São Paulo 04026-002, SP, Brazil; (R.S.F.); (A.C.B.)
| |
Collapse
|
5
|
Inserra A, Campanale A, Cheishvili D, Dymov S, Wong A, Marcal N, Syme RA, Taylor L, De Gregorio D, Kennedy TE, Szyf M, Gobbi G. Modulation of DNA methylation and protein expression in the prefrontal cortex by repeated administration of D-lysergic acid diethylamide (LSD): Impact on neurotropic, neurotrophic, and neuroplasticity signaling. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110594. [PMID: 35777526 DOI: 10.1016/j.pnpbp.2022.110594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
AIM Psychedelic compounds elicit relief from mental disorders. However, the underpinnings of therapeutic improvement remain poorly understood. Here, we investigated the effects of repeated lysergic acid diethylamide (LSD) on whole-genome DNA methylation and protein expression in the mouse prefrontal cortex (PFC). METHODS Whole genome bisulphite sequencing (WGBS) and proteomics profiling of the mouse prefrontal cortex (PFC) were performed to assess DNA methylation and protein expression changes following 7 days of repeated LSD administration (30 μg/kg/day); a treatment we previously found to potentiate excitatory neurotransmission and to increase dendritic spine density in the PFC in mice. qRT-PCR was employed to validate candidate genes detected in both analyses. RESULTS LSD significantly modulated DNA methylation in 635 CpG sites of the mouse PFC, and in an independent cohort the expression level of 178 proteins. Gene signaling pathways affected are involved in nervous system development, axon guidance, synaptic plasticity, quantity and cell viability of neurons and protein translation. Four genes and their protein product were detected as differentially methylated and expressed, and their transcription was increased. Specifically, Coronin 7 (Coro7), an axon guidance cue; Penta-EF-Hand Domain Containing 1 (Pef1), an mTORC1 and cell cycle modulator; Ribosomal Protein S24 (Rps24), required for pre-rRNA maturation and biogenesis of proteins involved with cell proliferation and migration, and Abhydrolase Domain Containing 6, Acylglycerol Lipase (Abhd6), a post-synaptic lipase. CONCLUSIONS LSD affects DNA methylation, altering gene expression and protein expression related to neurotropic-, neurotrophic- and neuroplasticity signaling. This could represent a core mechanism mediating the effects of psychedelics.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Campanale
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - David Cheishvili
- Department of Oncology, McGill University, Montreal, QC, Canada; HKG Epitherapeutics, Hong Kong
| | - Sergiy Dymov
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Amy Wong
- Proteomics Platform, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Nathalie Marcal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Lorne Taylor
- Proteomics Platform, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Methylation and expression quantitative trait locus rs6296 in the HTR1B gene is associated with susceptibility to opioid use disorder. Psychopharmacology (Berl) 2022; 239:2515-2523. [PMID: 35438303 DOI: 10.1007/s00213-022-06141-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Serotonin (5-HT) is implicated in the reward processes underlying substance use disorder. Epigenetic and transcriptional mechanisms contribute to the development of addictive states. To examine the potential mechanisms of 5-HT receptor genes in opioid use disorder, we first determined the associations between several single-nucleotide polymorphism (SNPs) in three representative 5-HT receptor genes (HTR1B, HTR2A, and HTR3B) and susceptibility to heroin use disorder in 1731 participants. Gene-gene interactions among these genes were analyzed. After identifying the susceptibility genes and SNPs for heroin use disorder, DNA methylation in the promoter region of these susceptibility genes was compared between 111 healthy controls and 120 patients with heroin use disorder. In addition, associations between the susceptibility SNPs and methylation of the CpG sites and gene promoters with differential methylation between groups were examined. Finally, the function of the susceptibility SNPs in the expression of the corresponding genes was screened. Our results demonstrated that rs6296 in the HTR1B gene was correlated with susceptibility to heroin use disorder. Gene-gene interactions between the HTR1B and HTR2A genes were identified. The CpG sites HTR1B_07 and HTR1B_26 and the promoter region of the HTR1B gene were hypermethylated in patients with heroin use disorder compared with healthy controls. Notably, rs6296 correlated in an allele-specific manner with methylation in the HTR1B gene promoter in the blood and gene expression of the HTR1B gene in the frontal cortex and hypothalamus. SNP rs6296 was associated with opioid use disorder by involving mechanisms of DNA methylation and expression of the HTR1B gene.
Collapse
|