1
|
Li DL, Hodge AM, Cribb L, Southey MC, Giles GG, Milne RL, Dugué PA. Body Size, Diet Quality, and Epigenetic Aging: Cross-Sectional and Longitudinal Analyses. J Gerontol A Biol Sci Med Sci 2024; 79:glae026. [PMID: 38267386 PMCID: PMC10953795 DOI: 10.1093/gerona/glae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 01/26/2024] Open
Abstract
Epigenetic age is an emerging marker of health that is highly predictive of disease and mortality risk. There is a lack of evidence on whether lifestyle changes are associated with changes in epigenetic aging. We used data from 1 041 participants in the Melbourne Collaborative Cohort Study with blood DNA methylation measures at baseline (1990-1994, mean age: 57.4 years) and follow-up (2003-2007, mean age: 68.8 years). The Alternative Healthy Eating Index-2010 (AHEI-2010), the Mediterranean Dietary Score, and the Dietary Inflammatory Index were used as measures of diet quality, and weight, waist circumference, and waist-to-hip ratio as measures of body size. Five age-adjusted epigenetic aging measures were considered: GrimAge, PhenoAge, PCGrimAge, PCPhenoAge, and DunedinPACE. Multivariable linear regression models including restricted cubic splines were used to assess the cross-sectional and longitudinal associations of body size and diet quality with epigenetic aging. Associations between weight and epigenetic aging cross-sectionally at both time points were positive and appeared greater for DunedinPACE (per SD: β ~0.24) than for GrimAge and PhenoAge (β ~0.10). The longitudinal associations with weight change were markedly nonlinear (U-shaped) with stable weight being associated with the lowest epigenetic aging at follow-up, except for DunedinPACE, for which only weight gain showed a positive association. We found negative, linear associations for AHEI-2010 both cross-sectionally and longitudinally. Other adiposity measures and dietary scores showed similar results. In middle-aged to older adults, declining diet quality and weight gain may increase epigenetic age, while the association for weight loss may require further investigation. Our study sheds light on the potential of weight management and dietary improvement in slowing aging processes.
Collapse
Affiliation(s)
- Danmeng Lily Li
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison M Hodge
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Lachlan Cribb
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Dugué PA, Yu C, Hodge AM, Wong EM, Joo JE, Jung CH, Schmidt D, Makalic E, Buchanan DD, Severi G, English DR, Hopper JL, Milne RL, Giles GG, Southey MC. Reply to: Comments on "Methylation scores for smoking, alcohol consumption and body mass index and risk of seven types of cancer". Int J Cancer 2023; 153:1545-1546. [PMID: 37387529 DOI: 10.1002/ijc.34644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Affiliation(s)
- Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Chenglong Yu
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - JiHoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Chol-Hee Jung
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Gianluca Severi
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Médecine Universités Paris-Saclay, UVSQ, Gustave Roussy, Villejuif, France
| | - Dallas R English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Cribb L, Hodge AM, Yu C, Li SX, English DR, Makalic E, Southey MC, Milne RL, Giles GG, Dugué PA. Inflammation and Epigenetic Aging Are Largely Independent Markers of Biological Aging and Mortality. J Gerontol A Biol Sci Med Sci 2022; 77:2378-2386. [PMID: 35926479 PMCID: PMC9799220 DOI: 10.1093/gerona/glac147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 01/20/2023] Open
Abstract
Limited evidence exists on the link between inflammation and epigenetic aging. We aimed to (a) assess the cross-sectional and prospective associations of 22 inflammation-related plasma markers and a signature of inflammaging with epigenetic aging and (b) determine whether epigenetic aging and inflammaging are independently associated with mortality. Blood samples from 940 participants in the Melbourne Collaborative Cohort Study collected at baseline (1990-1994) and follow-up (2003-2007) were assayed for DNA methylation and 22 inflammation-related markers, including well-established markers (eg, interleukins and C-reactive protein) and metabolites of the tryptophan-kynurenine pathway. Four measures of epigenetic aging (PhenoAge, GrimAge, DunedinPoAm, and Zhang) and a signature of inflammaging were considered, adjusted for age, and transformed to Z scores. Associations were assessed using linear regression, and mortality hazard ratios (HR) and 95% confidence intervals (95% CI) were estimated using Cox regression. Cross-sectionally, most inflammation-related markers were associated with epigenetic aging measures, although with generally modest effect sizes (regression coefficients per SD ≤ 0.26) and explaining altogether between 1% and 11% of their variation. Prospectively, baseline inflammation-related markers were not, or only weakly, associated with epigenetic aging after 11 years of follow-up. Epigenetic aging and inflammaging were strongly and independently associated with mortality, for example, inflammaging: HR = 1.41, 95% CI = 1.27-1.56, p = 2 × 10-10, which was only slightly attenuated after adjustment for 4 epigenetic aging measures: HR = 1.35, 95% CI = 1.22-1.51, p = 7 × 10-9). Although cross-sectionally associated with epigenetic aging, inflammation-related markers accounted for a modest proportion of its variation. Inflammaging and epigenetic aging are essentially nonoverlapping markers of biological aging and may be used jointly to predict mortality.
Collapse
Affiliation(s)
- Lachlan Cribb
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison M Hodge
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Chenglong Yu
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Sherly X Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Pierre-Antoine Dugué
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| |
Collapse
|