1
|
Thompson AW, Black AC, Huang Y, Shi Q, Furness AI, Braasch I, Hoffmann FG, Ortí G. Transcriptomic data support phylogenetic congruence and reveal genomic changes associated with the repeated evolution of annualism in aplocheiloid killifishes (Cyprinodontiformes). Mol Phylogenet Evol 2024; 201:108209. [PMID: 39366593 DOI: 10.1016/j.ympev.2024.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Repeated evolution of novel life histories that are correlated with ecological variables offers opportunities to study convergence in genetic, developmental, and metabolic features. Nearly half of the 800 species of Aplocheiloid killifishes, a clade of teleost fishes with a circumtropical distribution, are "annual" or seasonal species that survive in ephemeral bodies of water that desiccate and are unfeasible for growth, reproduction, or survival for weeks to months every year. But the repeated evolution of adaptations that are key features of the annual life history among these fishes remains poorly known without a robust phylogenetic framework. We present a large-scale phylogenomic reconstruction of aplocheiloid killifishes evolution using newly sequenced transcriptomes obtained from a diversity of killifish lineages representing putative independent origins of annualism. Ancestral state estimation shows that developmental dormancy (diapause), a key trait of the killifish annual life cycle, may have originated up to seven times independently among African and South American lineages. To further explore the genetic basis of this unique trait, we measure changes in evolutionary rates among orthologous genes across the killifish tree of life by quantifying codon evolution using dN/dS ratios. We show that some genes have higher dN/dS ratios in lineages leading to species with annual life history. Many of them constitute key developmental genes or nuclear-encoded metabolic genes that control oxidative phosphorylation. Lastly, we compare these genes with higher ω to genes previously associated to developmental dormancy and metabolic shifts in killifishes and other vertebrates, and thereby identify molecular evolutionary signatures of repeated transitions to extreme environments.
Collapse
Affiliation(s)
- Andrew W Thompson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA; Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
| | | | - Yu Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
| | - Andrew I Furness
- Maryland Fish and Wildlife Conservation Office U.S. Fish and Wildlife Service Annapolis, MD, USA
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, MS, USA
| | - Guillermo Ortí
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Anka IZ, Uren Webster TM, Berbel-Filho WM, Hitchings M, Overland B, Weller S, Garcia de Leaniz C, Consuegra S. Microbiome and epigenetic variation in wild fish with low genetic diversity. Nat Commun 2024; 15:4725. [PMID: 38830879 PMCID: PMC11148108 DOI: 10.1038/s41467-024-49162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Non-genetic sources of phenotypic variation, such as the epigenome and the microbiome, could be important contributors to adaptive variation for species with low genetic diversity. However, little is known about the complex interaction between these factors and the genetic diversity of the host, particularly in wild populations. Here, we examine the skin microbiome composition of two closely-related mangrove killifish species with different mating systems (self-fertilising and outcrossing) under sympatric and allopatric conditions. This allows us to partition the influence of the genotype and the environment on their microbiome and (previously described) epigenetic profiles. We find the diversity and community composition of the skin microbiome are strongly shaped by the environment and, to a lesser extent, by species-specific influences. Heterozygosity and microbiome alpha diversity, but not epigenetic variation, are associated with the fluctuating asymmetry of traits related to performance (vision) and behaviour (aggression). Our study identifies that a proportion of the epigenetic diversity and microbiome differentiation is unrelated to genetic variation, and we find evidence for an associative relationship between microbiome and epigenetic diversity in these wild populations. This suggests that both mechanisms could potentially contribute to variation in species with low genetic diversity.
Collapse
Affiliation(s)
- Ishrat Z Anka
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
- Department of Aquaculture, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Tamsyn M Uren Webster
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Waldir M Berbel-Filho
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Matthew Hitchings
- Institute of Life Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Benjamin Overland
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Sarah Weller
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Carlos Garcia de Leaniz
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK
- Marine Research Centre (CIM-UVIGO), Universidade de Vigo, Vigo, Spain
| | - Sofia Consuegra
- Department of Biosciences, Centre for Sustainable Aquatic Research, Swansea University, Swansea, Wales, SA2 8PP, UK.
- Grupo de Biotecnología Acuática, Departamento de Biotecnología y Acuicultura, Instituto de Investigacións Mariñas, IIM-CSIC, Vigo, Spain.
| |
Collapse
|
3
|
Runemark A, Moore EC, Larson EL. Hybridization and gene expression: Beyond differentially expressed genes. Mol Ecol 2024:e17303. [PMID: 38411307 DOI: 10.1111/mec.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Gene expression has a key role in reproductive isolation, and studies of hybrid gene expression have identified mechanisms causing hybrid sterility. Here, we review the evidence for altered gene expression following hybridization and outline the mechanisms shown to contribute to altered gene expression in hybrids. Transgressive gene expression, transcending that of both parental species, is pervasive in early generation sterile hybrids, but also frequently observed in viable, fertile hybrids. We highlight studies showing that hybridization can result in transgressive gene expression, also in established hybrid lineages or species. Such extreme patterns of gene expression in stabilized hybrid taxa suggest that altered hybrid gene expression may result in hybridization-derived evolutionary novelty. We also conclude that while patterns of misexpression in hybrids are well documented, the understanding of the mechanisms causing misexpression is lagging. We argue that jointly assessing differences in cell composition and cell-specific changes in gene expression in hybrids, in addition to assessing changes in chromatin and methylation, will significantly advance our understanding of the basis of altered gene expression. Moreover, uncovering to what extent evolution of gene expression results in altered expression for individual genes, or entire networks of genes, will advance our understanding of how selection moulds gene expression. Finally, we argue that jointly studying the dual roles of altered hybrid gene expression, serving both as a mechanism for reproductive isolation and as a substrate for hybrid ecological adaptation, will lead to significant advances in our understanding of the evolution of gene expression.
Collapse
Affiliation(s)
- Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
| | - Emily C Moore
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA
| |
Collapse
|
4
|
Zhong H, Ren B, Lou C, Zhou Y, Luo Y, Xiao J. Nonadditive and allele-specific expression of ghrelin in hybrid tilapia. Front Endocrinol (Lausanne) 2023; 14:1292730. [PMID: 38152137 PMCID: PMC10751329 DOI: 10.3389/fendo.2023.1292730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/29/2023] Open
Abstract
Background Interspecies hybridization is an important breeding method to generate fishes with heterosis in aquaculture. Using this method, hybrid Nile tilapia (Oreochromis niloticus, ♀) × blue tilapia (Oreochromis aureus, ♂) has been produced and widely farmed due to its growth and appetite superiorities. However, the genetic mechanism of these advanced traits is still not well understood. Ghrelin is a crucial gene that regulates growth and appetite in fishes. In the present study, we focused on the expression characteristics and its regulation of ghrelin in the hybrid. Results The tissue distribution analysis showed that ghrelin was predominantly expressed in the stomach in the hybrid. Ghrelin was more highly expressed in the stomach in the hybrid and Nile tilapia, compared to blue tilapia, showing a nonadditive pattern. Two single-nucleotide polymorphism (SNP) sites were identified including T/C and C/G from the second exon in the ghrelin gene from Nile tilapia and blue tilapia. By pyrosequencing based on the SNP sites, the allele-specific expression (ASE) of ghrelin in the hybrid was assayed. The result indicated that ghrelin in the hybrid showed higher maternal allelic transcript ratios. Fasting significantly increased ghrelin overall expression at 4, 8, 12, 24, and 48 h. In addition, higher maternal allelic transcript ratios were not changed in the fasting hybrids at 48 h. The cis and trans effects were determined by evaluating the overall expression and ASE values in the hybrid. The expression of ghrelin was mediated by compensating cis and trans effects in hybrid. Conclusion In summary, the present lines of evidence showed the nonadditive expression of ghrelin in the hybrid tilapia and its regulation by subgenomes, offering new insight into gene expression characteristics in hybrids.
Collapse
Affiliation(s)
- Huan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Bingxin Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chenyi Lou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongju Luo
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Jun Xiao
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|