Guo L, Pei H, Yang Y, Kong Y. Betulinic acid regulates tumor-associated macrophage M2 polarization and plays a role in inhibiting the liver cancer progression.
Int Immunopharmacol 2023;
122:110614. [PMID:
37423159 DOI:
10.1016/j.intimp.2023.110614]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE
To investigate the regulatory role and mechanism of betulinic acid (BET) in tumor-associated M2 macrophage polarization.
METHODS
For in vitro experiments, RAW246.7 and J774A.1 cells were used, and differentiation of M2 macrophages was induced using recombinant interleukin-4/13. The levels of M2 cell marker cytokines were measured, and the proportion of F4/80+CD206+ cells was evaluated using flow cytometry. Furthermore, STAT6 signaling was detected, and H22 and RAW246.7 cells were cocultured to assess the effect of BET on M2 macrophage polarization. Changes in the malignant behavior of H22 cells after coculturing were observed and a tumor-bearing mouse model was constructed to determine CD206 cell infiltration after BET intervention.
RESULTS
In vitro experiments showed that BET inhibited M2 macrophage polarization and phospho-STAT6 signal modification. Moreover, the ability to promote the malignant behavior of H22 cells was reduced in BET-treated M2 macrophages. Furthermore, in vivo experiments indicated that BET decreased M2 macrophage polarization and infiltration in the microenvironment of liver cancer. BET was noted to predominantly bind to the STAT6 site to inhibit STAT6 phosphorylation.
CONCLUSION
BET bound chiefly to STAT6 to inhibit STAT6 phosphorylation and decrease M2 polarization in the microenvironment of liver cancer. These findings suggest that BET exerts an antitumor effect by modulating M2 macrophage function.
Collapse