1
|
López-Catalina A, Ragab M, Reverter A, González-Recio O. A Recursive Model Approach to Include Epigenetic Effects in Genetic Evaluations Using Simulated DNA Methylation Effects. J Anim Breed Genet 2025. [PMID: 39868874 DOI: 10.1111/jbg.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
The advancement of epigenetics has highlighted DNA methylation as an intermediate-omic influencing gene regulation and phenotypic expression. With emerging technologies enabling the large-scale and affordable capture of methylation data, there is growing interest in integrating this information into genetic evaluation models for animal breeding. This study used methylome information from six dairy cows to simulate the methylation profile of 13,183 genotyped animals. The liability to methylation was treated as an additive trait, while a trait moderated by methylation effects was also simulated. A multiomic model (GOBLUP) was adapted to incorporate methylation data in genomic and genetic evaluations, using the traditional BLUP method as a benchmark. The GOBLUP accurately recovered heritability estimates for the liability to methylation in all low, medium and high heritability scenarios and was consistent at estimating the heritability for the epigenetics-moderated trait of interest at a low-medium heritability of 0.14. The genetic variance recovered by the BLUP model was influenced by the h2 of the liability to methylation, and a part of the methylation variance for the phenotypic trait was captured as additive. The h2 of the phenotypic trait partially relies on the h2 value for the methylation windows in the traditional model. A newly proposed estimated epigenetic value (EEV) combines the traditional additive genetic information from genotyping arrays with epigenetic information. The correlation between the traditional estimated breeding value (EBV) and EEV was high (0.92-0.99 depending on the scenario), but the correlation of the EEV with the true breeding value was higher than the correlation between the traditional EBV and the TBV (0.85 vs. 0.75, 0.71 vs. 0.66 and 0.61 vs. 0.62 depending on the scenario). This study demonstrates that the GOBLUP multiomic recursive model can effectively separates additive and epigenetic variances, enabling improved breeding decisions by accounting for genetic liability to DNA methylation. This enables more informed breeding decisions, optimising selection for desired traits. Emerging sequencing techniques offer new opportunities for cost-effective simultaneous acquisition of genetic and epigenetic data, further enhancing breeding accuracy.
Collapse
Affiliation(s)
- Adrián López-Catalina
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, Spain
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Mohamed Ragab
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain
| | - Antonio Reverter
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain
| |
Collapse
|
2
|
Fan G, Pan T, Ji X, Jiang C, Wang F, Liu X, Ma L, Le Q. Paternal preconception donepezil exposure enhances learning in offspring. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:25. [PMID: 39342229 PMCID: PMC11439325 DOI: 10.1186/s12993-024-00252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Recent research has indicated that parental use of central nervous system-targeting medications during periconceptional periods may affect offspring across various developmental and behavioral domains. The present study sought to investigate the potential influence of paternal use of donepezil, a specific reversible central acetylcholinesterase inhibitor that activates the cholinergic system to promote cognition, on offspring. RESULTS In this study, male rats were bred after 21 days of oral donepezil administration at a dose of 4 mg/kg to generate F1 offspring. Both male and female F₁ offspring displayed enhanced performance in learning and short-term memory tests, including novel object recognition, Y maze, and operant learning. Transcriptomic analysis revealed notable alterations in genes associated with the extracellular matrix in the hippocampal tissue of the F1 generation. Integration with genes related to intelligence identified potential core genes that may be involved in the observed behavioral enhancements. CONCLUSIONS These findings indicate that prolonged paternal exposure to donepezil may enhance the learning and memory abilities of offspring, possibly by targeting nonneural, extracellular regions. Further research is required to fully elucidate any potential transgenerational effects.
Collapse
Grants
- 32270660, 31930046, 32330041, 82021002, 32171041, 32222033, 32271064 the Natural Science Foundation of China
- 32270660, 31930046, 32330041, 82021002, 32171041, 32222033, 32271064 the Natural Science Foundation of China
- 32270660, 31930046, 32330041, 82021002, 32171041, 32222033, 32271064 the Natural Science Foundation of China
- 32270660, 31930046, 32330041, 82021002, 32171041, 32222033, 32271064 the Natural Science Foundation of China
- 32270660, 31930046, 32330041, 82021002, 32171041, 32222033, 32271064 the Natural Science Foundation of China
- 2021ZD0203500, 2021ZD0202100,, 2022ZD0214500 STI2030-Major Projects
- 2021ZD0203500, 2021ZD0202100,, 2022ZD0214500 STI2030-Major Projects
- 2021ZD0203500, 2021ZD0202100,, 2022ZD0214500 STI2030-Major Projects
- 2021ZD0203500, 2021ZD0202100,, 2022ZD0214500 STI2030-Major Projects
- 2021-I2M-5-009 the CAMS Innovation Fund for Medical Sciences
- 2021-I2M-5-009 the CAMS Innovation Fund for Medical Sciences
Collapse
Affiliation(s)
- Guangyuan Fan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Tao Pan
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xingyu Ji
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Changyou Jiang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, 200032, China.
| |
Collapse
|
3
|
Babaei K, Aziminezhad M, Mirzajani E, Mozdarani H, Sharami SH, Norollahi SE, Samadani AA. A critical review of the recent concept of regulatory performance of DNA Methylations, and DNA methyltransferase enzymes alongside the induction of immune microenvironment elements in recurrent pregnancy loss. Toxicol Rep 2024; 12:546-563. [PMID: 38798987 PMCID: PMC11127471 DOI: 10.1016/j.toxrep.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Recurrent pregnancy Loss (RPL)is a frequent and upsetting condition. Besides the prevalent cause of RPL including chromosomal defects in the embryo,the effect of translational elements like alterations of epigenetics are of great importance. The emergence of epigenetics has offered a fresh outlook on the causes and treatment of RPL by focusing on the examination of DNA methylation. RPL may arise as a result of aberrant DNA methylation of imprinted genes, placenta-specific genes, immune-related genes, and sperm DNA, which may have a direct or indirect impact on embryo implantation, growth, and development. Moreover, the distinct immunological tolerogenic milieu established at the interface between the mother and fetus plays a crucial role in sustaining pregnancy. Given this, there has been a great deal of interest in the regulation of DNA methylation and alterations in the cellular components of the maternal-fetal immunological milieu. The research on DNA methylation's role in RPL incidence and the control of the mother-fetal immunological milieu is summed up in this review.
Collapse
Affiliation(s)
- Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Hajar Sharami
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|