1
|
Liang Q, Tan D, Chen H, Guo X, Afzal M, Wang X, Tan Z, Peng G. Endophyte-mediated enhancement of salt resistance in Arachis hypogaea L. by regulation of osmotic stress and plant defense-related genes. Front Microbiol 2024; 15:1383545. [PMID: 38846577 PMCID: PMC11153688 DOI: 10.3389/fmicb.2024.1383545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Soil salinization poses a significant environmental challenge affecting plant growth and agricultural sustainability. This study explores the potential of salt-tolerant endophytes to mitigate the adverse effects of soil salinization, emphasizing their impact on the development and resistance of Arachis hypogaea L. (peanuts). Methods The diversity of culturable plant endophytic bacteria associated with Miscanthus lutarioriparius was investigated. The study focused on the effects of Bacillus tequilensis, Staphylococcus epidermidis, and Bacillus siamensis on the development and germination of A. hypogaea seeds in pots subjected to high NaCl concentrations (200 mM L-1). Results Under elevated NaCl concentrations, the inoculation of endophytes significantly (p < 0.05) enhanced seedling germination and increased the activities of enzymes such as Superoxide dismutase, catalase, and polyphenol oxidase, while reducing malondialdehyde and peroxidase levels. Additionally, endophyte inoculation resulted in increased root surface area, plant height, biomass contents, and leaf surface area of peanuts under NaCl stress. Transcriptome data revealed an augmented defense and resistance response induced by the applied endophyte (B. tequilensis, S. epidermidis, and B. siamensis) strain, including upregulation of abiotic stress related mechanisms such as fat metabolism, hormones, and glycosyl inositol phosphorylceramide (Na+ receptor). Na+ receptor under salt stress gate Ca2+ influx channels in plants. Notably, the synthesis of secondary metabolites, especially genes related to terpene and phenylpropanoid pathways, was highly regulated. Conclusion The inoculated endophytes played a possible role in enhancing salt tolerance in peanuts. Future investigations should explore protein-protein interactions between plants and endophytes to unravel the mechanisms underlying endophyte-mediated salt resistance in plants.
Collapse
Affiliation(s)
- Qihua Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Dedong Tan
- University of South China, Hengyang, China
| | - Haohai Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xiaoli Guo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guixiang Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Pavlović I, Mlinarić S, Tarkowská D, Oklestkova J, Novák O, Lepeduš H, Bok VV, Brkanac SR, Strnad M, Salopek-Sondi B. Early Brassica Crops Responses to Salinity Stress: A Comparative Analysis Between Chinese Cabbage, White Cabbage, and Kale. FRONTIERS IN PLANT SCIENCE 2019; 10:450. [PMID: 31031786 PMCID: PMC6470637 DOI: 10.3389/fpls.2019.00450] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 05/13/2023]
Abstract
Soil salinity is severely affecting crop productivity in many countries, particularly in the Mediterranean area. To evaluate early plant responses to increased salinity and characterize tolerance markers, three important Brassica crops - Chinese cabbage (Brassica rapa ssp. pekinensis), white cabbage (B. oleracea var. capitata) and kale (B. oleracea var. acephala) were subjected to short-term (24 h) salt stress by exposing them to NaCl at concentrations of 50, 100, or 200 mM. Physiological (root growth, photosynthetic performance parameters, and Na+/K+ ratio) and biochemical parameters (proline content and lipid peroxidation as indicated by malondialdehyde, MDA, levels) in the plants' roots and leaves were then measured. Photosynthetic parameters such as the total performance index PItotal (describing the overall efficiency of PSI, PSII and the intersystem electron transport chain) appeared to be the most salinity-sensitive parameter and informative stress marker. This parameter was decreased more strongly in Chinese cabbage than in white cabbage and kale. It indicated that salinity reduced the capacity of the photosynthetic system for efficient energy conversion, particularly in Chinese cabbage. In parallel with the photosynthetic impairments, the Na+/K+ ratio was highest in Chinese cabbage leaves and lowest in kale leaves while kale root is able to keep high Na+/K+ ratio without a significant increase in MDA. Thus Na+/K+ ratio, high in root and low in leaves accompanying with low MDA level is an informative marker of salinity tolerance. The crops' tolerance was positively correlated with levels of the stress hormone abscisic acid (ABA) and negatively correlated with levels of jasmonic acid (JA), and jasmonoyl-L-isoleucine (JA-Ile). Furthermore, salinity induced contrasting changes in levels of the growth-promoting hormones brassinosteroids (BRs). The crop's tolerance was positively correlated with levels of BR precursor typhasterol while negatively with the active BR brassinolide. Principal Component Analysis revealed correlations in observed changes in phytohormones, biochemical, and physiological parameters. Overall, the results show that kale is the most tolerant of the three species and Chinese cabbage the most sensitive to salt stress, and provide holistic indications of the spectrum of tolerance mechanisms involved.
Collapse
Affiliation(s)
- Iva Pavlović
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, Olomouc, Czechia
| | - Selma Mlinarić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, Olomouc, Czechia
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, Olomouc, Czechia
| | - Hrvoje Lepeduš
- Faculty of Humanities and Social Sciences, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Valerija Vujčić Bok
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sandra Radić Brkanac
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Palacký University, Olomouc, Czechia
| | | |
Collapse
|
3
|
Albaladejo I, Egea I, Morales B, Flores FB, Capel C, Lozano R, Bolarin MC. Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery induced by salt stress through transcriptomic analysis. BMC PLANT BIOLOGY 2018; 18:213. [PMID: 30285698 PMCID: PMC6167845 DOI: 10.1186/s12870-018-1436-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/23/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND The res (restored cell structure by salinity) mutant, recently identified as the first tomato mutant accumulating jasmonate in roots under non-stressful conditions, exhibits a remarkable growth inhibition and morphological alterations in roots and leaves, which are suppressed when the mutant plants are exposed to salinity. In order to understand the molecular basis of the phenotype recovery induced by salt stress in the res mutant, we carried out a comparative transcriptomic analysis in roots and leaves of wild-type and res plants in absence of stress (control) and when the phenotypic recovery of res mutant began to be observed upon salt stress (5 days of 200 mM NaCl). RESULTS The number of differentially expressed genes was three times greater in roots than in leaves of res vs WT plants grown in control, and included the down-regulation of growth-promoting genes and the up-regulation of genes involved in Ca2+ signalling, transcription factors and others related to stress responses. However, these expression differences were attenuated under salt stress, coinciding with the phenotypic normalisation of the mutant. Contrarily to the attenuated response observed in roots, an enhanced response was found in leaves under salt stress. This included drastic expression changes in several circadian clock genes, such as GIGANTEA1, which was down-regulated in res vs WT plants. Moreover, the higher photosynthetic efficiency of res leaves under salt stress was accompanied by specific salt-upregulation of the genes RUBISCO ACTIVASE1 and ALTERNATIVE OXIDASE1A. Very few genes were found to be differentially expressed in both tissues (root and leaf) and conditions (control and salt), but this group included SlWRKY39 and SlMYB14 transcription factors, as well as genes related to protein homeostasis, especially protease inhibitors such as METALLOCARBOXYPEPTIDASE INHIBITOR, which also seem to play a role in the phenotype recovery and salt tolerance of res mutant. CONCLUSIONS In summary, in this study we have identified genes which seem to have a prominent role in salt tolerance. Moreover, we think this work could contribute to future breeding of tomato crops with increased stress tolerance.
Collapse
Affiliation(s)
- Irene Albaladejo
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Isabel Egea
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Belen Morales
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Francisco B. Flores
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Maria C. Bolarin
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario Espinardo, 30100 Murcia, Spain
| |
Collapse
|
4
|
Egea I, Albaladejo I, Meco V, Morales B, Sevilla A, Bolarin MC, Flores FB. The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration. Sci Rep 2018; 8:2791. [PMID: 29434236 PMCID: PMC5809557 DOI: 10.1038/s41598-018-21187-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 01/31/2018] [Indexed: 12/29/2022] Open
Abstract
Breeding for drought-tolerant crops is a pressing issue due to the increasing frequency and duration of droughts caused by climate change. Although important sources of variation for drought tolerance exist in wild relatives, the mechanisms and the key genes controlling tolerance in tomato are little known. The aim of this study is to determine the drought response of the tomato wild relative Solanum pennellii (Sp) compared with the cultivated tomato Solanum lycopersicum (Sl). The paper investigates the physiological and molecular responses in leaves of Sp and Sl plants without stress and moderate drought stress. Significant physiological differences between species were found, with Sp leaves showing greater ability to avoid water loss and oxidative damage. Leaf transcriptomic analysis carried out when leaves did not as yet show visual dehydration symptoms revealed important constitutive expression differences between Sp and Sl species. Genes linked to different physiological and metabolic processes were induced by drought in Sp, especially those involved in N assimilation, GOGAT/GS cycle and GABA-shunt. Up-regulation in Sp of genes linked to JA/ET biosynthesis and signaling pathways was also observed. In sum, genes involved in the amino acid metabolism together with genes linked to ET/JA seem to be key actors in the drought tolerance of the wild tomato species.
Collapse
Affiliation(s)
- Isabel Egea
- Department of stress biology and plant pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Irene Albaladejo
- Department of stress biology and plant pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Victoriano Meco
- Department of stress biology and plant pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain.,Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea, University of Malaga-CSIC, 29071, Malaga, Spain
| | - Belén Morales
- Department of stress biology and plant pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Angel Sevilla
- Inbionova Biotech S.L., Edif. CEEIM.University of Murcia, Campus de Espinardo, 30100, Espinardo-Murcia, Spain
| | - Maria C Bolarin
- Department of stress biology and plant pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain
| | - Francisco B Flores
- Department of stress biology and plant pathology, CEBAS-CSIC, P.O. Box 164, 30100, Espinardo-Murcia, Spain.
| |
Collapse
|