1
|
Dirks-Mulder A, Ahmed I, uit het Broek M, Krol L, Menger N, Snier J, van Winzum A, de Wolf A, van't Wout M, Zeegers JJ, Butôt R, Heijungs R, van Heuven BJ, Kruizinga J, Langelaan R, Smets EF, Star W, Bemer M, Gravendeel B. Morphological and Molecular Characterization of Orchid Fruit Development. FRONTIERS IN PLANT SCIENCE 2019; 10:137. [PMID: 30838009 PMCID: PMC6390509 DOI: 10.3389/fpls.2019.00137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/28/2019] [Indexed: 05/28/2023]
Abstract
Efficient seed dispersal in flowering plants is enabled by the development of fruits, which can be either dehiscent or indehiscent. Dehiscent fruits open at maturity to shatter the seeds, while indehiscent fruits do not open and the seeds are dispersed in various ways. The diversity in fruit morphology and seed shattering mechanisms is enormous within the flowering plants. How these different fruit types develop and which molecular networks are driving fruit diversification is still largely unknown, despite progress in eudicot model species. The orchid family, known for its astonishing floral diversity, displays a huge variation in fruit dehiscence types, which have been poorly investigated. We undertook a combined approach to understand fruit morphology and dehiscence in different orchid species to get more insight into the molecular network that underlies orchid fruit development. We describe fruit development in detail for the epiphytic orchid species Erycina pusilla and compare it to two terrestrial orchid species: Cynorkis fastigiata and Epipactis helleborine. Our anatomical analysis provides further evidence for the split carpel model, which explains the presence of three fertile and three sterile valves in most orchid species. Interesting differences were observed in the lignification patterns of the dehiscence zones. While C. fastigiata and E. helleborine develop a lignified layer at the valve boundaries, E. pusilla fruits did not lignify at these boundaries, but formed a cuticle-like layer instead. We characterized orthologs of fruit-associated MADS-domain transcription factors and of the Arabidopsis dehiscence-related genes INDEHISCENT (IND)/HECATE 3 (HEC3), REPLUMLESS (RPL) and SPATULA (SPT)/ALCATRAZ (ALC) in E. pusilla, and found that the key players of the eudicot fruit regulatory network appear well-conserved in monocots. Protein-protein interaction studies revealed that MADS-domain complexes comprised of FRUITFULL (FUL), SEPALLATA (SEP) and AGAMOUS (AG) /SHATTERPROOF (SHP) orthologs can also be formed in E. pusilla, and that the expression of HEC3, RPL, and SPT can be associated with dehiscence zone development similar to Arabidopsis. Our expression analysis also indicates differences, however, which may underlie fruit divergence.
Collapse
Affiliation(s)
- Anita Dirks-Mulder
- Endless Forms Group, Naturalis Biodiversity Center, Leiden, Netherlands
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Israa Ahmed
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Mark uit het Broek
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Louie Krol
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Nino Menger
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Jasmijn Snier
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Anne van Winzum
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Anneke de Wolf
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Martijn van't Wout
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Jamie J. Zeegers
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
| | - Roland Butôt
- Endless Forms Group, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Reinout Heijungs
- Department of Econometrics and Operations Research, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, Netherlands
| | | | - Jaco Kruizinga
- Hortus botanicus, Leiden University, Leiden, Netherlands
| | - Rob Langelaan
- Endless Forms Group, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Erik F. Smets
- Endless Forms Group, Naturalis Biodiversity Center, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Ecology, Evolution and Biodiversity Conservation Cluster, KU Leuven, Leuven, Belgium
| | - Wim Star
- Endless Forms Group, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Marian Bemer
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen, Netherlands
| | - Barbara Gravendeel
- Endless Forms Group, Naturalis Biodiversity Center, Leiden, Netherlands
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
2
|
Yeung EC. A perspective on orchid seed and protocorm development. BOTANICAL STUDIES 2017; 58:33. [PMID: 28779349 PMCID: PMC5544657 DOI: 10.1186/s40529-017-0188-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 05/07/2023]
Abstract
This perspective draws attention to the functional organization of orchid seed and protocorm during the course of development. The orchid embryos have a well-organized developmental plan generating a blue-print of a protocorm as they mature. The different phases of embryo development in orchids, i.e. histodifferentiation, storage product synthesis and accumulation, and maturation are essentially similar to other flowering plants. The protocorm is considered as a unique structure designed to establish symbiotic association with mycorrhizal fungi and with the primary goal to form a shoot apical meristem. This perspective brings forth arguments that the processes of embryo and protocorm development are highly programmed events, enhancing survival of orchid seeds and plantlets in their natural habitats. Furthermore, the ability of protocorm cells to divide, makes them ideal explants for micropropagation and transformation studies. Through seed germination and micropropagation using protocorms as explants, orchid conservation efforts are greatly enhanced.
Collapse
Affiliation(s)
- Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|