1
|
Avidan O, Moraes TA, Mengin V, Feil R, Rolland F, Stitt M, Lunn JE. In vivo protein kinase activity of SnRK1 fluctuates in Arabidopsis rosettes during light-dark cycles. PLANT PHYSIOLOGY 2023; 192:387-408. [PMID: 36725081 PMCID: PMC10152665 DOI: 10.1093/plphys/kiad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Sucrose-nonfermenting 1 (SNF1)-related kinase 1 (SnRK1) is a central hub in carbon and energy signaling in plants, and is orthologous with SNF1 in yeast and the AMP-activated protein kinase (AMPK) in animals. Previous studies of SnRK1 relied on in vitro activity assays or monitoring of putative marker gene expression. Neither approach gives unambiguous information about in vivo SnRK1 activity. We have monitored in vivo SnRK1 activity using Arabidopsis (Arabidopsis thaliana) reporter lines that express a chimeric polypeptide with an SNF1/SnRK1/AMPK-specific phosphorylation site. We investigated responses during an equinoctial diel cycle and after perturbing this cycle. As expected, in vivo SnRK1 activity rose toward the end of the night and rose even further when the night was extended. Unexpectedly, although sugars rose after dawn, SnRK1 activity did not decline until about 12 h into the light period. The sucrose signal metabolite, trehalose 6-phosphate (Tre6P), has been shown to inhibit SnRK1 in vitro. We introduced the SnRK1 reporter into lines that harbored an inducible trehalose-6-phosphate synthase construct. Elevated Tre6P decreased in vivo SnRK1 activity in the light period, but not at the end of the night. Reporter polypeptide phosphorylation was sometimes negatively correlated with Tre6P, but a stronger and more widespread negative correlation was observed with glucose-6-phosphate. We propose that SnRK1 operates within a network that controls carbon utilization and maintains diel sugar homeostasis, that SnRK1 activity is regulated in a context-dependent manner by Tre6P, probably interacting with further inputs including hexose phosphates and the circadian clock, and that SnRK1 signaling is modulated by factors that act downstream of SnRK1.
Collapse
Affiliation(s)
- Omri Avidan
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thiago A Moraes
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven, B-3001 Leuven, Belgium
- KU Leuven Plant Institute (LPI), B-3001 Leuven, Belgium
| | - Mark Stitt
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
2
|
Son S, Im JH, Ko J, Han K. SNF1-related protein kinase 1 represses Arabidopsis growth through post-translational modification of E2Fa in response to energy stress. THE NEW PHYTOLOGIST 2023; 237:823-839. [PMID: 36478538 PMCID: PMC10107498 DOI: 10.1111/nph.18597] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/08/2022] [Indexed: 06/01/2023]
Abstract
Cellular sugar starvation and/or energy deprivation serves as an important signaling cue for the live cells to trigger the necessary stress adaptation response. When exposed to cellular energy stress (ES) conditions, the plants reconfigure metabolic pathways and rebalance energy status while restricting vegetative organ growth. Despite the vital importance of this ES-induced growth restriction, the regulatory mechanism underlying the response remains largely elusive in plants. Using plant cell- and whole plant-based functional analyses coupled with extended genetic validation, we show that cellular ES-activated SNF1-related protein kinase 1 (SnRK1.1) directly interacts with and phosphorylates E2Fa transcription factor, a critical cell cycle regulator. Phosphorylation of E2Fa by SnRK1.1 leads to its proteasome-mediated protein degradation, resulting in S-phase repression and organ growth restriction. Our findings show that ES-dependently activated SnRK1.1 adjusts cell proliferation and vegetative growth for plants to cope with constantly fluctuating environments.
Collapse
Affiliation(s)
- Seungmin Son
- Department of Life SciencesKorea University145 Anamro, Sungbuk‐guSeoul02841Korea
- National Institute of Agricultural Sciences, Rural Development AdministrationJeonju54874Korea
| | - Jong Hee Im
- Department of Life SciencesKorea University145 Anamro, Sungbuk‐guSeoul02841Korea
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Jae‐Heung Ko
- Department of Plant & Environmental New Resources, College of Life Science and Graduate School of BiotechnologyKyung Hee UniversityYongin‐siGyeonggi‐do17104Korea
| | - Kyung‐Hwan Han
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
- Department of ForestryMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
3
|
Zhou Y, Li Z, Zhu H, Jiang Y, Jiang G, Qu H. Energy homeostasis mediated by the LcSnRK1α-LcbZIP1/3 signaling pathway modulates litchi fruit senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:698-712. [PMID: 35634876 DOI: 10.1111/tpj.15845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Cellular energy status is a key factor deciding the switch-on of the senescence of horticultural crops. Despite the established significance of the conserved energy master regulator sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) in plant development, its working mechanism and related signaling pathway in the regulation of fruit senescence remain enigmatic. Here, we demonstrate that energy deficit accelerates fruit senescence, whereas exogenous ATP treatment delays it. The transient suppression of LcSnRK1α in litchi (Litchi chinensis Sonn.) fruit inhibited the expression of energy metabolism-related genes, while its ectopic expression in tomato (Solanum lycopersicum) promoted ripening and a high energy level. Biochemical analyses revealed that LcSnRK1α interacted with and phosphorylated the transcription factors LcbZIP1 and LcbZIP3, which directly bound to the promoters to activate the expression of DARK-INDUCIBLE 10 (LcDIN10), ASPARAGINE SYNTHASE 1 (LcASN1), and ANTHOCYANIN SYNTHASE (LcANS), thereby fine-tuning the metabolic reprogramming to ensure energy and redox homeostasis. Altogether, these observations reveal a post-translational modification mechanism by which LcSnRK1α-mediated phosphorylation of LcbZIP1 and LcbZIP3 regulates the expression of metabolic reprogramming-related genes, consequently modulating litchi fruit senescence.
Collapse
Affiliation(s)
- Yijie Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiwei Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hong Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Wang Y, Su C, Yu Y, He Y, Wei H, Li N, Li H, Duan J, Li B, Li J, Davis SJ, Wang L. TIME FOR COFFEE regulates phytochrome A-mediated hypocotyl growth through dawn-phased signaling. THE PLANT CELL 2022; 34:2907-2924. [PMID: 35543486 PMCID: PMC9338810 DOI: 10.1093/plcell/koac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/24/2022] [Indexed: 05/14/2023]
Abstract
To enhance plant fitness under natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. In turn, the circadian clock exquisitely regulates the abundance and activity of photoreceptors via largely uncharacterized mechanisms. Here we show that the clock regulator TIME FOR COFFEE (TIC) controls the activity of the far-red light photoreceptor phytochrome A (phyA) at multiple levels in Arabidopsis thaliana. Null mutants of TIC displayed dramatically increased sensitivity to light irradiation with respect to hypocotyl growth, especially to far-red light. RNA-sequencing demonstrated that TIC and phyA play largely opposing roles in controlling light-regulated gene expression at dawn. Additionally, TIC physically interacts with the transcriptional repressor TOPLESS (TPL), which was associated with the significantly increased PHYA transcript levels in the tic-2 and tpl-1 mutants. Moreover, TIC interacts with phyA in the nucleus, thereby affecting phyA protein turnover and the formation of phyA nuclear speckles following light irradiation. Genetically, phyA was found to act downstream of TIC in regulating far red light-inhibited growth. Taken together, these findings indicate that TIC acts as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms at multiple levels.
Collapse
Affiliation(s)
| | | | | | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bin Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People’s Republic of China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Seth J Davis
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | | |
Collapse
|
5
|
Krahmer J, Hindle M, Perby LK, Mogensen HK, Nielsen TH, Halliday KJ, VanOoijen G, LeBihan T, Millar AJ. The circadian clock gene circuit controls protein and phosphoprotein rhythms in Arabidopsis thaliana. Mol Cell Proteomics 2021; 21:100172. [PMID: 34740825 PMCID: PMC8733343 DOI: 10.1016/j.mcpro.2021.100172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Twenty-four-hour, circadian rhythms control many eukaryotic mRNA levels, whereas the levels of their more stable proteins are not expected to reflect the RNA rhythms, emphasizing the need to test the circadian regulation of protein abundance and modification. Here we present circadian proteomic and phosphoproteomic time series from Arabidopsis thaliana plants under constant light conditions, estimating that just 0.4% of quantified proteins but a much larger proportion of quantified phospho-sites were rhythmic. Approximately half of the rhythmic phospho-sites were most phosphorylated at subjective dawn, a pattern we term the “phospho-dawn.” Members of the SnRK/CDPK family of protein kinases are candidate regulators. A CCA1-overexpressing line that disables the clock gene circuit lacked most circadian protein phosphorylation. However, the few phospho-sites that fluctuated despite CCA1-overexpression still tended to peak in abundance close to subjective dawn, suggesting that the canonical clock mechanism is necessary for most but perhaps not all protein phosphorylation rhythms. To test the potential functional relevance of our datasets, we conducted phosphomimetic experiments using the bifunctional enzyme fructose-6-phosphate-2-kinase/phosphatase (F2KP), as an example. The rhythmic phosphorylation of diverse protein targets is controlled by the clock gene circuit, implicating posttranslational mechanisms in the transmission of circadian timing information in plants. Circadian (phospho)proteomics time courses of plants with or without functional clock. Most protein abundance/phosphorylation rhythms require a transcriptional oscillator. The majority of rhythmic phosphosites peak around subjective dawn (“phospho-dawn”). A phosphorylated serine of the metabolic enzyme F2KP has functional relevance.
Collapse
Affiliation(s)
- Johanna Krahmer
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom; Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| | - Matthew Hindle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, Edinburgh, EH25 9RG, United Kingdom
| | - Laura K Perby
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Helle K Mogensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tom H Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Molecular Plant Biology, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Karen J Halliday
- Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Gerben VanOoijen
- Institute for Molecular Plant Science, School of Biological Sciences, Daniel Rutherford Building, Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Thierry LeBihan
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, CH Waddington Building, Max Born Crescent, Kings Buildings, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.
| |
Collapse
|
6
|
Crepin N, Rolland F. SnRK1 activation, signaling, and networking for energy homeostasis. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:29-36. [PMID: 31030062 DOI: 10.1016/j.pbi.2019.03.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 05/25/2023]
Abstract
The SnRK1 kinases are key regulators of the plant energy balance, but how their activity is regulated by metabolic status is still unclear. While the heterotrimeric kinase complex is well conserved among plants, fungi, and animals, plants appear to have modified its regulation to better fit their unique physiology and lifestyle. The SnRK1 kinases control metabolism, growth, and development, and stress tolerance by direct phosphorylation of metabolic enzymes and regulatory proteins and by extensive transcriptional regulation. Diverse types of transcription factors have already been implicated, with a well-studied role for the heterodimerizing group C and group S1 bZIPs. SnRK1 is also part of a more elaborate metabolic and stress signaling network, which includes the TOR kinase and the ABA-signaling SnRK2 kinases.
Collapse
Affiliation(s)
- Nathalie Crepin
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Filip Rolland
- Laboratory for Molecular Plant Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium.
| |
Collapse
|
7
|
Philippou K, Ronald J, Sánchez-Villarreal A, Davis AM, Davis SJ. Physiological and Genetic Dissection of Sucrose Inputs to the Arabidopsis thaliana Circadian System. Genes (Basel) 2019; 10:genes10050334. [PMID: 31052578 PMCID: PMC6563356 DOI: 10.3390/genes10050334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms allow an organism to synchronize internal physiological responses to the external environment. Perception of external signals such as light and temperature are critical in the entrainment of the oscillator. However, sugar can also act as an entraining signal. In this work, we have confirmed that sucrose accelerates the circadian period, but this observed effect is dependent on the reporter gene used. This observed response was dependent on sucrose being available during free-running conditions. If sucrose was applied during entrainment, the circadian period was only temporally accelerated, if any effect was observed at all. We also found that sucrose acts to stabilize the robustness of the circadian period under red light or blue light, in addition to its previously described role in stabilizing the robustness of rhythms in the dark. Finally, we also found that CCA1 is required for both a short- and long-term response of the circadian oscillator to sucrose, while LHY acts to attenuate the effects of sucrose on circadian period. Together, this work highlights new pathways for how sucrose could be signaling to the oscillator and reveals further functional separation of CCA1 and LHY.
Collapse
Affiliation(s)
- Koumis Philippou
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne D50829, Germany.
| | - James Ronald
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Alfredo Sánchez-Villarreal
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne D50829, Germany.
- Colegio de Postgraduados campus Campeche, Campeche, CP 24450, México.
| | - Amanda M Davis
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne D50829, Germany.
- Department of Biology, University of York, York, YO10 5DD, UK.
| | - Seth J Davis
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne D50829, Germany.
- Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|