1
|
Han X, Wei X, Lu W, Wu Q, Mao L, Luo Z. Transcriptional regulation of KCS gene by bZIP29 and MYB70 transcription factors during ABA-stimulated wound suberization of kiwifruit (Actinidia deliciosa). BMC PLANT BIOLOGY 2022; 22:23. [PMID: 34998386 PMCID: PMC8742354 DOI: 10.1186/s12870-021-03407-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/09/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Our previous study has demonstrated that the transcription of AchnKCS involved in suberin biosynthesis was up-regulated by exogenous abscisic acid (ABA) during the wound suberization of kiwifruit, but the regulatory mechanism has not been fully elucidated. RESULTS Through subcellular localization analysis in this work, AchnbZIP29 and AchnMYB70 transcription factors were observed to be localized in the nucleus. Yeast one-hybrid and dual-luciferase assay proved the transcriptional activation of AchnMYB70 and transcriptional suppression of AchnbZIP29 on AchnKCS promoter. Furthermore, the transcription level of AchnMYB70 was enhanced by ABA during wound suberization of kiwifruit, but AchnbZIP29 transcription was reduced by ABA. CONCLUSIONS Therefore, it was believed that ABA enhanced the transcriptional activation of AchnMYB70 on AchnKCS by increasing AchnMYB70 expression. On the contrary, ABA relieved the inhibitory effect of AchnbZIP29 on transcription of AchnKCS by inhibiting AchnbZIP29 expression. These results gave further insight into the molecular regulatory network of ABA in wound suberization of kiwifruit.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Xiaopeng Wei
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Wenjing Lu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qiong Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
2
|
Arabidopsis bZIP18 and bZIP52 Accumulate in Nuclei Following Heat Stress where They Regulate the Expression of a Similar Set of Genes. Int J Mol Sci 2021; 22:ijms22020530. [PMID: 33430325 PMCID: PMC7830406 DOI: 10.3390/ijms22020530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/07/2023] Open
Abstract
Heat stress (HS) is a major abiotic stress that negatively impacts crop yields across the globe. Plants respond to elevated temperatures by changing gene expression, mediated by transcription factors (TFs) functioning to enhance HS tolerance. The involvement of Group I bZIP TFs in the heat stress response (HSR) is not known. In this study, bZIP18 and bZIP52 were investigated for their possible role in the HSR. Localization experiments revealed their nuclear accumulation following heat stress, which was found to be triggered by dephosphorylation. Both TFs were found to possess two motifs containing serine residues that are candidates for phosphorylation. These motifs are recognized by 14–3–3 proteins, and bZIP18 and bZIP52 were found to bind 14–3–3 ε, the interaction of which sequesters them to the cytoplasm. Mutation of both residues abolished 14–3–3 ε interaction and led to a strict nuclear localization for both TFs. RNA-seq analysis revealed coordinated downregulation of several metabolic pathways including energy metabolism and translation, and upregulation of numerous lncRNAs in particular. These results support the idea that bZIP18 and bZIP52 are sequestered to the cytoplasm under control conditions, and that heat stress leads to their re-localization to nuclei, where they jointly regulate gene expression.
Collapse
|
3
|
Fu L, Wang P, Xiong Y. Target of Rapamycin Signaling in Plant Stress Responses. PLANT PHYSIOLOGY 2020; 182:1613-1623. [PMID: 31949028 PMCID: PMC7140942 DOI: 10.1104/pp.19.01214] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/21/2019] [Indexed: 05/05/2023]
Abstract
Target of Rapamycin (TOR) is an atypical Ser/Thr protein kinase that is evolutionally conserved among yeasts, plants, and mammals. In plants, TOR signaling functions as a central hub to integrate different kinds of nutrient, energy, hormone, and environmental signals. TOR thereby orchestrates every stage of plant life, from embryogenesis, meristem activation, root, and leaf growth to flowering, senescence, and life span determination. Besides its essential role in the control of plant growth and development, recent research has also shed light on its multifaceted roles in plant environmental stress responses. Here, we review recent findings on the involvement of TOR signaling in plant adaptation to nutrient deficiency and various abiotic stresses. We also discuss the mechanisms underlying how plants cope with such unfavorable conditions via TOR-abscisic acid crosstalk and TOR-mediated autophagy, both of which play crucial roles in plant stress responses. Until now, little was known about the upstream regulators and downstream effectors of TOR in plant stress responses. We propose that the Snf1-related protein kinase-TOR axis plays a role in sensing various stress signals, and predict the key downstream effectors based on recent high-throughput proteomic analyses.
Collapse
Affiliation(s)
- Liwen Fu
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province 350002, People's Republic of China
| | - Pengcheng Wang
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province 350002, People's Republic of China
| |
Collapse
|
4
|
Tsugama D, Yoon HS, Fujino K, Liu S, Takano T. Protein phosphatase 2A regulates the nuclear accumulation of the Arabidopsis bZIP protein VIP1 under hypo-osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6101-6112. [PMID: 31504762 PMCID: PMC6859724 DOI: 10.1093/jxb/erz384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
VIP1 is a bZIP transcription factor in Arabidopsis thaliana. When cells are exposed to mechanical stress, VIP1 transiently accumulates in the nucleus, where it regulates the expression of its target genes and suppresses mechanical stress-induced root waving. The nuclear-cytoplasmic shuttling of VIP1 is regulated by phosphorylation and calcium-dependent signaling, but specific regulators of these processes remain to be identified. Here, inhibitors of protein phosphatase 2A (PP2A) are shown to inhibit both the mechanical stress-induced dephosphorylation and nuclear accumulation of VIP1. The PP2A B subunit, which recruits substrates of PP2A holoenzyme, is classified into B, B', B'', and B''' families. Using bimolecular fluorescence complementation, in vitro pull-down, and yeast two-hybrid assays, we show that VIP1 interacts with at least two of the six members of the Arabidopsis PP2A B''-family subunit, which have calcium-binding EF-hand motifs. VIP1AAA, a constitutively nuclear-localized VIP1 variant with substitutions in putative phosphorylation sites of VIP1, suppressed the root waving induced by VIP1-SRDX (a repression domain-fused variant of VIP1). These results support the idea that VIP1 is dephosphorylated by PP2A and that the dephosphorylation suppresses the root waving. The phosphorylation sites of VIP1 and its homologs were narrowed down by in vitro phosphorylation, yeast two-hybrid, and protein subcellular localization assays.
Collapse
Affiliation(s)
- Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
- Correspondence:
| | - Hyuk Sung Yoon
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-ku, Sapporo-shi, Hokkaido, Japan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Hangzhou, PR China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, Midori-cho, Nishitokyo-shi, Tokyo, Japan
| |
Collapse
|