1
|
Li Y, Wang J, Gao Y, Pandey BK, Peralta Ogorek LL, Zhao Y, Quan R, Zhao Z, Jiang L, Huang R, Qin H. The OsEIL1-OsWOX11 transcription factor module controls rice crown root development in response to soil compaction. THE PLANT CELL 2024; 36:2393-2409. [PMID: 38489602 PMCID: PMC11132869 DOI: 10.1093/plcell/koae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Optimizing the root architecture of crops is an effective strategy for improving crop yields. Soil compaction is a serious global problem that limits crop productivity by restricting root growth, but the underlying molecular mechanisms are largely unclear. Here, we show that ethylene stimulates rice (Oryza sativa) crown root development in response to soil compaction. First, we demonstrate that compacted soil promotes ethylene production and the accumulation of ETHYLENE INSENSITIVE 3-LIKE 1 (OsEIL1) in rice roots, stimulating crown root primordia initiation and development, thereby increasing crown root number in lower stem nodes. Through transcriptome profiling and molecular analyses, we reveal that OsEIL1 directly activates the expression of WUSCHEL-RELATED HOMEOBOX 11 (OsWOX11), an activator of crown root emergence and growth, and that OsWOX11 mutations delay crown root development, thus impairing the plant's response to ethylene and soil compaction. Genetic analysis demonstrates that OsWOX11 functions downstream of OsEIL1. In summary, our results demonstrate that the OsEIL1-OsWOX11 module regulates ethylene action during crown root development in response to soil compaction, providing a strategy for the genetic modification of crop root architecture and grain agronomic traits.
Collapse
Affiliation(s)
- Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Yadi Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bipin K Pandey
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Lucas León Peralta Ogorek
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Zihan Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| |
Collapse
|
2
|
Li E, Tang J, Liu J, Zhang Z, Hua B, Jiang J, Miao M. The Roles of Hormone Signals Involved in Rhizosphere Pressure Response Induce Corm Expansion in Sagittaria trifolia. Int J Mol Sci 2023; 24:12345. [PMID: 37569720 PMCID: PMC10419225 DOI: 10.3390/ijms241512345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Soil is the base for conventional plant growth. The rhizosphere pressure generated from soil compaction shows a dual effect on plant growth in agricultural production. Compacted soil leads to root growth stagnation and causes bending or thickening, thus affecting the growth of aboveground parts of plants. In arrowhead (Sagittaria trifolia L.), the corms derived from the expanded tips of underground stolons are its storage organ. We found that the formation of corms was significantly delayed under hydroponic conditions without rhizosphere pressure originating from soil/sand. In the initial stage of corm expansion, the anatomic structure of arrowhead corm-forming parts harvested from hydroponics and sand culture was observed, and we found that the corm expansion was derived from cell enlargement and starch accumulation. Comparative transcriptome analysis indicated that the corm expansion was closely related to the change in endogenous hormone levels. Endogenous abscisic acid and salicylic acid concentrations were significantly increased in sand-cultured corms. Higher ethylene and jasmonic acid contents were also detected in all arrowhead samples, demonstrating that these hormones may play potential roles in the rhizosphere pressure response and corm expansion. The expression of genes participating in hormone signaling could explain the rising accumulation of certain hormones. Our current results draw an extensive model to reveal the potential regulation mechanism of arrowhead corm expansion promoted by rhizosphere pressure, which will provide important references for further studying the molecular mechanism of rhizosphere pressure modulating the development of underground storage organs in other plants.
Collapse
Affiliation(s)
- Enjiao Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jing Tang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiexia Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiezeng Jiang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics, the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Bello-Bello E, López-Arredondo D, Rico-Chambrón TY, Herrera-Estrella L. Conquering compacted soils: uncovering the molecular components of root soil penetration. TRENDS IN PLANT SCIENCE 2022; 27:814-827. [PMID: 35525799 DOI: 10.1016/j.tplants.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO2 sequestration and storage in deeper soil strata.
Collapse
Affiliation(s)
- Elohim Bello-Bello
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Damar López-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Thelma Y Rico-Chambrón
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
4
|
Qin H, Pandey BK, Li Y, Huang G, Wang J, Quan R, Zhou J, Zhou Y, Miao Y, Zhang D, Bennett MJ, Huang R. Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. THE PLANT CELL 2022; 34:1273-1288. [PMID: 35021223 PMCID: PMC8972239 DOI: 10.1093/plcell/koac008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/06/2022] [Indexed: 05/10/2023]
Abstract
Primary root growth in cereal crops is fundamental for early establishment of the seedling and grain yield. In young rice (Oryza sativa) seedlings, the primary root grows rapidly for 7-10 days after germination and then stops; however, the underlying mechanism determining primary root growth is unclear. Here, we report that the interplay of ethylene and gibberellin (GA) controls the orchestrated development of the primary root in young rice seedlings. Our analyses advance the knowledge that primary root growth is maintained by higher ethylene production, which lowers bioactive GA contents. Further investigations unraveled that ethylene signaling transcription factor ETHYLENE INSENSITIVE3-LIKE 1 (OsEIL1) activates the expression of the GA metabolism genes GIBBERELLIN 2-OXIDASE 1 (OsGA2ox1), OsGA2ox2, OsGA2ox3, and OsGA2ox5, thereby deactivating GA activity, inhibiting cell proliferation in the root meristem, and ultimately gradually inhibiting primary root growth. Mutation in OsGA2ox3 weakened ethylene-induced GA inactivation and reduced the ethylene sensitivity of the root. Genetic analysis revealed that OsGA2ox3 functions downstream of OsEIL1. Taken together, we identify a molecular pathway impacted by ethylene during primary root elongation in rice and provide insight into the coordination of ethylene and GA signals during root development and seedling establishment.
Collapse
Affiliation(s)
- Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Bipin K Pandey
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Yuxiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoqiang Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Zhou
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Yuchen Miao
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Author for correspondence: (R.H.), (M.J.B.), and (D.Z.)
| | - Malcolm J Bennett
- Future Food Beacon and School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- Author for correspondence: (R.H.), (M.J.B.), and (D.Z.)
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China
- Author for correspondence: (R.H.), (M.J.B.), and (D.Z.)
| |
Collapse
|
5
|
Cui Y, Bian J, Guan Y, Xu F, Han X, Deng X, Liu X. Genome-Wide Analysis and Expression Profiles of Ethylene Signal Genes and Apetala2/Ethylene-Responsive Factors in Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:828482. [PMID: 35371146 PMCID: PMC8968948 DOI: 10.3389/fpls.2022.828482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 05/05/2023]
Abstract
Peanut is an important oil and economic crop widely cultivated in the world. It has special characteristics such as blooming on the ground but bearing fruits underground. During the peg penetrating into the ground, it is subjected to mechanical stress from the soil at the same time. It has been proved that mechanical stress affects plant growth and development by regulating the ethylene signaling-related genes. In this study, we identified some genes related to ethylene signal of peanut, including 10 ethylene sensors, two constitutive triple responses (CTRs), four ethylene insensitive 2 (EIN2s), four ethylene insensitive 3 (EIN3s), six EIN3-binding F-box proteins (EBFs), and 188 Apetala2/ethylene-responsive factors (AP2/ERFs). One hundred and eighty-eight AP2/ERFs were further divided into four subfamilies, 123 ERFs, 56 AP2s, 6 Related to ABI3/VP1 (RAVs), and three Soloists, of them one hundred and seventy AP2/ERF gene pairs were clustered into segmental duplication events in genome of Arachis hypogaea. A total of 134, 138, 97, and 150 AhAP2/ERF genes formed 210, 195, 166, and 525 orthologous gene pairs with Arachis duranensis, Arachis ipaensis, Arabidopsis thaliana, and Glycine max, respectively. Our transcriptome results showed that two EIN3s (Arahy.J729H0 and Arahy.S7XF8N) and one EBFs (Arahy.G4JMEM) were highly expressed when mechanical stress increased. Among the 188 AhAP2/ERF genes, there were 31 genes with the fragments per kilobase of exon model per million mapped fragments (FPKM) ≥ 100 at least one of the 15 samples of Tifrunner. Among them, three AhAP2/ERFs (Arahy.15RATX, Arahy.FAI7YU, and Arahy.452FBF) were specifically expressed in seeds and five AhAP2/ERFs (Arahy.HGAZ7D, Arahy.ZW7540, Arahy.4XS3FZ, Arahy.QGFJ76, and Arahy.AS0C7C) were highly expressed in the tissues, which responded mechanical stress, suggesting that they might sense mechanical stress. Mechanical stress simulation experiment showed that three AhAP2/ERFs (Arahy.QGFJ76, Arahy.AS0C7C, and Arahy.HGAZ7D) were sensitive to mechanical stress changes and they all had the conservative repressor motif (DLNXXP) in the C-terminus, indicated that they might transmit mechanical stress signals through transcriptional inhibition. This study reveals the regulatory landscape of ethylene signal-related genes in peanut, providing valuable information for the mining of target genes for further study.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Jianxin Bian
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Yu Guan
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Fangtao Xu
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
| | - Xue Han
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xingwang Deng
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- *Correspondence: Xingwang Deng,
| | - Xiaoqin Liu
- Institute of Advanced Agricultural Science, Peking University, Weifang, China
- Xiaoqin Liu,
| |
Collapse
|
6
|
Jacobsen AGR, Jervis G, Xu J, Topping JF, Lindsey K. Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. THE NEW PHYTOLOGIST 2021; 231:225-242. [PMID: 33428776 PMCID: PMC8651006 DOI: 10.1111/nph.17180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/05/2021] [Indexed: 05/21/2023]
Abstract
The growth and development of root systems is influenced by mechanical properties of the substrate in which the plants grow. Mechanical impedance, such as by compacted soil, can reduce root elongation and limit crop productivity. To understand better the mechanisms involved in plant root responses to mechanical impedance stress, we investigated changes in the root transcriptome and hormone signalling responses of Arabidopsis to artificial root barrier systems in vitro. We demonstrate that upon encountering a barrier, reduced Arabidopsis root growth and a characteristic 'step-like' growth pattern is due to a reduction in cell elongation associated with changes in signalling gene expression. Data from RNA-sequencing combined with reporter line and mutant studies identified essential roles for reactive oxygen species, ethylene and auxin signalling during the barrier response. We propose a model in which early responses to mechanical impedance include reactive oxygen signalling integrated with ethylene and auxin responses to mediate root growth changes. Inhibition of ethylene responses allows improved growth in response to root impedance, an observation that may inform future crop breeding programmes.
Collapse
Affiliation(s)
| | - George Jervis
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Jian Xu
- Department of Plant Systems PhysiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJthe Netherlands
- Department of Biological Sciences and Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
| | | | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| |
Collapse
|
7
|
Okamoto T, Takatani S, Motose H, Iida H, Takahashi T. The root growth reduction in response to mechanical stress involves ethylene-mediated microtubule reorganization and transmembrane receptor-mediated signal transduction in Arabidopsis. PLANT CELL REPORTS 2021; 40:575-582. [PMID: 33439322 DOI: 10.1007/s00299-020-02653-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/16/2020] [Indexed: 05/11/2023]
Abstract
We found that mutations in a Ca2+-permeable mechanosensitive channel MCA1, an ethylene-regulated microtubule-associated protein WDL5, and a versatile co-receptor BAK1 affect root growth response to mechanical stress. Plant root tips exposed to mechanical impedance show a temporal reduction in the elongation growth. The process involves a transient Ca2+ increase in the cytoplasm followed by ethylene signaling. To dissect the molecular mechanisms underlying this response, we examined the root growth of a series of Arabidopsis mutants with potentially altered response to mechanical stress after transfer from vertical to horizontal plates that were covered by dialysis membrane as an impedance. Among the plant hormone-response mutants tested, the ethylene-insensitive mutant ein3 was confirmed to show no growth reduction after the transfer. The root growth reduction was attenuated in a mutant of MCA1 encoding a Ca2+-permeable mechanosensitive channel and that of WDL5 encoding an ethylene-regulated microtubule-associated protein. We also found that the growth reduction was enhanced in a mutant of BAK1 encoding a co-receptor that pairs with numerous leucine-rich repeat receptor kinases to modulate growth and immunity. These results suggest the root growth reduction in response to mechanical stress involves ethylene-mediated microtubule reorganization and also transmembrane receptor-mediated signal transduction.
Collapse
Affiliation(s)
- Takashi Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Shogo Takatani
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- Laboratoire de Reproduction Et Développement Des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Hiroyasu Motose
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Tokyo, 184-8501, Japan
| | - Taku Takahashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|