1
|
Wang L, Liu H, Sun Y, Wang W, Li C, Liu Y, Liu Z, Ji R, Huang S, Qu G, Wang Y. Identification and Candidate Gene Analysis of Brcl1, a Novel Gene Confers a Leaf Curled Phenotype in Brassica rapa L. Int J Mol Sci 2025; 26:732. [PMID: 39859447 PMCID: PMC11765633 DOI: 10.3390/ijms26020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Leaf shape is an important determinant of photosynthesis, yield and quality in plants. In this study, we obtained a curled leaf mutant, cl1, from an ethyl methanesulfonate (EMS)-induced mutagenesis population. It was designated the Brcl1YS locus. Bulk segregant RNA sequencing combined with recombinant screening identified the candidate interval responsible for Brcl1YS in a 97.5 kb region on chromosome A02. Twelve genes were identified within the candidate region. Sequence differences and co-separation verification confirmed that BraA02g017030.3C was the most promising candidate gene underlying the Brcl1YS locus. It is homologous to Arabidopsis AT1G66350 (RGL1), which has been shown to act as a negative regulator of the gibberellin pathway. Combined with cell morphology observation, it is speculated that the loss of function of Brcl1YS results in differences in cell development, ultimately leading to changes in leaf morphology. The results will contribute to the understanding of the molecular mechanisms underlying leaf curling in B. rapa.
Collapse
Affiliation(s)
- Lihui Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Huishan Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yunxia Sun
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Wei Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chao Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanwei Liu
- Department of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruiqin Ji
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaoyang Qu
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yugang Wang
- Department of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Iqbal MZ, Liang Y, Anwar M, Fatima A, Hassan MJ, Ali A, Tang Q, Peng Y. Overexpression of Auxin/Indole-3-Acetic Acid Gene TrIAA27 Enhances Biomass, Drought, and Salt Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2684. [PMID: 39409554 PMCID: PMC11478388 DOI: 10.3390/plants13192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024]
Abstract
White clover (Trifolium repens L.) is an important forage and aesthetic plant species, but it is susceptible to drought and heat stress. The phytohormone auxin regulates several aspects of plant development and alleviates the effects of drought stress in plants, including white clover, by involving auxin/indole acetic acid (Aux/IAA) family genes. However, Aux/IAA genes and the underlying mechanism of auxin-mediated drought response remain elusive in white clover. To extend our understanding of the multiple functions of Aux/IAAs, the current study described the characterization of a member of the Aux/IAA family TrIAA27 of white clover. TrIAA27 protein had conserved the Aux/IAA family domain and shared high sequence similarity with the IAA27 gene of a closely related species and Arabidopsis. Expression of TrIAA27 was upregulated in response to heavy metal, drought, salt, NO, Ca2+, H2O2, Spm, ABA, and IAA treatments, while downregulated under cold stress in the roots and leaves of white clover. TrIAA27 protein was localized in the nucleus. Constitutive overexpression of TrIAA27 in Arabidopsis thaliana led to enhanced hypocotyl length, root length, plant height, leaf length and width, and fresh and dry weights under optimal and stress conditions. There was Improved photosynthesis activity, chlorophyll content, survival rate, relative water content, endogenous catalase (CAT), and peroxidase (POD) concentration with a significantly lower electrolyte leakage percentage, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) concentration in overexpression lines compared to wild-type Arabidopsis under drought and salt stress conditions. Exposure to stress conditions resulted in relatively weaker roots and above-ground plant growth inhibition, enhanced endogenous levels of major antioxidant enzymes, which correlated well with lower lipid peroxidation, lower levels of reactive oxygen species, and reduced cell death in overexpression lines. The data of the current study demonstrated that TrIAA27 is involved in positively regulating plant growth and development and could be considered a potential target gene for further use, including the breeding of white clover for higher biomass with improved root architecture and tolerance to abiotic stress.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| | - Yuzhou Liang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Akash Fatima
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| |
Collapse
|
3
|
Imani Asl E, Soorni A, Mehrabi R. Genome-wide characterization, functional analysis, and expression profiling of the Aux/IAA gene family in spinach. BMC Genomics 2024; 25:567. [PMID: 38840073 PMCID: PMC11155116 DOI: 10.1186/s12864-024-10467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.
Collapse
Affiliation(s)
- Erfan Imani Asl
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
4
|
Ting NC, Chan PL, Buntjer J, Ordway JM, Wischmeyer C, Ooi LCL, Low ETL, Marjuni M, Sambanthamurthi R, Singh R. High-resolution genetic linkage map and height-related QTLs in an oil palm ( Elaeis guineensis) family planted across multiple sites. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1301-1318. [PMID: 38024957 PMCID: PMC10678900 DOI: 10.1007/s12298-023-01360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
A refined SNP array containing 92,459 probes was developed and applied for chromosome scanning, construction of a high-density genetic linkage map and QTL analysis in a selfed Nigerian oil palm family (T128). Genotyping of the T128 mapping family generated 76,447 good quality SNPs for detailed scanning of aberration and homozygosity in the individual pseudo-chromosomes. Of them, 25,364 polymorphic SNPs were used for linkage analysis resulting in an 84.4% mapping rate. A total of 21,413 SNPs were mapped into 16 linkage groups (LGs), covering a total map length of 1364.5 cM. This genetic map is 16X denser than the previous version used to establish pseudo-chromosomes of the oil palm reference genome published in 2013. The QTLs associated with height, height increment and rachis length were identified in LGs TT05, 06, 08, 15 and 16. The present QTLs as well as those published previously were tagged to the reference genome to determine their chromosomal locations. Almost all the QTLs identified in this study were either close to or co-located with those reported in other populations. Determining the QTL position on chromosomes was also helpful in mining for the underlying candidate genes. In total, 55 putative genes and transcription factors involved in the biosynthesis, conjugation and signalling of the major phytohormones, especially for gibberellins and cell wall morphogenesis were found to be present in the identified genomic QTL regions, and their potential roles in plant dwarfism are discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01360-2.
Collapse
Affiliation(s)
- Ngoot-Chin Ting
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Pek-Lan Chan
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | | | - Leslie Cheng-Li Ooi
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Eng Ti Leslie Low
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Marhalil Marjuni
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Rajinder Singh
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
5
|
Zhu H, Li H, Yu J, Zhao H, Zhang K, Ge W. Regulatory Mechanisms of ArAux/ IAA13 and ArAux/ IAA16 in the Rooting Process of Acer rubrum. Genes (Basel) 2023; 14:1206. [PMID: 37372386 DOI: 10.3390/genes14061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Acer rubrum is difficult to root during cutting propagation. Auxin/indole-acetic acids (Aux/IAA) proteins, which are encoded by the early response genes of auxin, are transcriptional repressors that play important roles in auxin-mediated root growth and development. In this study, ArAux/IAA13 and ArAux/IAA16, which were significantly differentially expressed after 300 mg/L indole butyric acid treatment, were cloned. Heatmap analysis revealed that they might be associated with the process of adventitious root (AR) growth and development mediated by auxin. Subcellular localization analysis showed that they performed their function in the nucleus. Bimolecular fluorescence complementation assays revealed the interactions between them and two auxin response factor (ARF) proteins, ArARF10 and ArARF18, confirming their relevance to AR growth and development. Overexpression of transgenic plants confirmed that the overexpression of ArAux/IAA13 and ArAux/IAA16 inhibited AR development. These results help elucidate the mechanisms of auxin-mediated AR growth and development during the propagation of A. rubrum and provide a molecular basis for the rooting of cuttings.
Collapse
Affiliation(s)
- Huiyu Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Huiju Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Jiayu Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Hewen Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Kezhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| | - Wei Ge
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, China
| |
Collapse
|
6
|
Qin S, Fu S, Yang Y, Sun Q, Wang J, Dong Y, Gu X, Wang T, Xie X, Mo X, Jiang H, Yu Y, Yan J, Chu J, Zheng B, He Y. Comparative Microscopic, Transcriptome and IAA Content Analyses Reveal the Stem Growth Variations in Two Cultivars Ilex verticillata. PLANTS (BASEL, SWITZERLAND) 2023; 12:1941. [PMID: 37653858 PMCID: PMC10220661 DOI: 10.3390/plants12101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Ilex verticillata is not only an excellent ornamental tree species for courtyards, but it is also a popular bonsai tree. 'Oosterwijk' and 'Red sprite' are two varieties of Ilex verticillata. The former has a long stem with few branches, while the latter has a short stem. In order to explain the stem growth differences between the two cultivars 'Oosterwijk' and 'Red sprite', determination of the microstructure, transcriptome sequence and IAA content was carried out. The results showed that the xylem thickness, vessel area and vessel number of 'Oosterwijk' were larger than in 'Red sprite'. In addition, our analysis revealed that the differentially expressed genes which were enriched in phenylpropanoid biosynthesis; phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis in the black and tan modules of the two varieties. We found that AST, HCT and bHLH 94 may be key genes in the formation of shoot difference. Moreover, we found that the IAA content and auxin-related DEGs GH3.6, GH3, ATRP5, IAA27, SAUR36-like, GH3.6-like and AIP 10A5-like may play important roles in the formation of shoot differences. In summary, these results indicated that stem growth variations of 'Oosterwijk' and 'Red sprite' were associated with DEGs related to phenylpropanoid biosynthesis, phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis, as well as auxin content and DEGs related to the auxin signaling pathway.
Collapse
Affiliation(s)
- Sini Qin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Siyi Fu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Qiumin Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Jingqi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Yanling Dong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Xinyi Gu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Tao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Xiaoting Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China;
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou 310058, China;
| | - Youxiang Yu
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Jijun Yan
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (J.Y.); (J.C.)
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (J.Y.); (J.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (S.Q.); (S.F.); (Y.Y.); (Q.S.); (J.W.); (Y.D.); (X.G.); (T.W.); (X.X.); (B.Z.)
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou 311300, China
- National Forestry and Grassland Administration (NFGA) Research Center for Ilex, Hangzhou 311300, China
| |
Collapse
|
7
|
Yang M, Chen J, Chang Y, Wan S, Zhao Z, Ni F, Guan R. Fine Mapping of a Pleiotropic Locus ( BnUD1) Responsible for the Up-Curling Leaves and Downward-Pointing Siliques in Brassica napus. Int J Mol Sci 2023; 24:ijms24043069. [PMID: 36834480 PMCID: PMC9965582 DOI: 10.3390/ijms24043069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Leaves and siliques are important organs associated with dry matter biosynthesis and vegetable oil accumulation in plants. We identified and characterized a novel locus controlling leaf and silique development using the Brassica napus mutant Bnud1, which has downward-pointing siliques and up-curling leaves. The inheritance analysis showed that the up-curling leaf and downward-pointing silique traits are controlled by one dominant locus (BnUD1) in populations derived from NJAU5773 and Zhongshuang 11. The BnUD1 locus was initially mapped to a 3.99 Mb interval on the A05 chromosome with a BC6F2 population by a bulked segregant analysis-sequencing approach. To more precisely map BnUD1, 103 InDel primer pairs uniformly covering the mapping interval and the BC5F3 and BC6F2 populations consisting of 1042 individuals were used to narrow the mapping interval to a 54.84 kb region. The mapping interval included 11 annotated genes. The bioinformatic analysis and gene sequencing data suggested that BnaA05G0157900ZS and BnaA05G0158100ZS may be responsible for the mutant traits. Protein sequence analyses showed that the mutations in the candidate gene BnaA05G0157900ZS altered the encoded PME in the trans-membrane region (G45A), the PMEI domain (G122S), and the pectinesterase domain (G394D). In addition, a 573 bp insertion was detected in the pectinesterase domain of the BnaA05G0157900ZS gene in the Bnud1 mutant. Other primary experiments indicated that the locus responsible for the downward-pointing siliques and up-curling leaves negatively affected the plant height and 1000-seed weight, but it significantly increased the seeds per silique and positively affected photosynthetic efficiency to some extent. Furthermore, plants carrying the BnUD1 locus were compact, implying they may be useful for increasing B. napus planting density. The findings of this study provide an important foundation for future research on the genetic mechanism regulating the dicotyledonous plant growth status, and the Bnud1 plants can be used directly in breeding.
Collapse
|
8
|
Li S, Zhang J, Zhang L, Fang X, Luo J, An H, Zhang X. Genome-wide identification and comprehensive analysis reveal potential roles of long non-coding RNAs in fruit development of southern highbush blueberry ( Vaccinium corymbosum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1078085. [PMID: 36582646 PMCID: PMC9792668 DOI: 10.3389/fpls.2022.1078085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Introduction Blueberries have a high antioxidant content and are produced as healthy food worldwide. Long non-coding RNAs (lncRNAs) are a type of regulatory RNAs that play a variety of roles in plants. Nonetheless, information on lncRNAs and their functions during blueberry fruit development is scarce in public databases. Methods In the present study, we performed genome-wide identification of lncRNAs in a southern highbush blueberry using strand-specific RNA sequencing (ssRNA-Seq). Differentially expressed lncRNAs (DE-lncRNAs) and their potential target genes were analyzed at four stages of fruit development. Cis-regulatory DE-lncRNAs were predicted using co-localization analysis. Results These findings included a total of 25,036 lncRNAs from 17,801 loci. Blueberry lncRNAs had shorter transcript lengths, smaller open reading frame (ORF) sizes, fewer exons, and fewer isoforms than protein-coding RNAs, as well as lower expression levels and higher stage-specificity during fruit development. A total of 105 DE-lncRNAs were identified among the comparison group of PAD vs. CUP, 443 DE-lncRNAs were detected when comparing CUP with PINK fruits, and 285 DE-lncRNAs were revealed when comparing PINK and BLUE fruits. According to Kyoto Encyclopedia of Genes and Genomes annotation, target genes of DE-lncRNAs were primarily enriched in the "Autophagy-other", "DNA replication", "Endocytosis", 'photosynthesis' and 'chlorophyll metabolism' pathways, suggesting that lncRNAs may pay potential roles in fruit expansion and ripening. Moreover, several lncRNAs have been proposed as cis-regulators of the key genes involved in flavonoid biosynthesis. MSTRG.107242.6, and its putative target gene, BTB/POZ and TAZ domain-containing protein, might play critical roles in anthocyanin accumulation in blueberries. Discussion These findings highlight the regulatory function of lncRNAs and aid in elucidating the molecular mechanism underlying blueberry fruit growth.
Collapse
Affiliation(s)
- Shuigen Li
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiaying Zhang
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liqing Zhang
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xianping Fang
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun Luo
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haishan An
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xueying Zhang
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
9
|
Genome-Wide Identification and Expression Analysis of the Aux/IAA Gene Family of the Drumstick Tree ( Moringa oleifera Lam.) Reveals Regulatory Effects on Shoot Regeneration. Int J Mol Sci 2022; 23:ijms232415729. [PMID: 36555370 PMCID: PMC9779525 DOI: 10.3390/ijms232415729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Auxin plays a critical role in organogenesis in plants. The classical auxin signaling pathway holds that auxin initiates downstream signal transduction by degrading Aux/IAA transcription repressors that interact with ARF transcription factors. In this study, 23 MoIAA genes were identified in the drumstick tree genome. All MoIAA genes were located within five subfamilies based on phylogenetic evolution analysis; the gene characteristics and promoter cis-elements were also analyzed. The protein interaction network between the MoIAAs with MoARFs was complex. The MoIAA gene family responded positively to NAA treatment, exhibiting different patterns and degrees, notably for MoIAA1, MoIAA7 and MoIAA13. The three genes expressed and functioned in the nucleus; only the intact encoding protein of MoIAA13 exhibited transcriptional activation activity. The shoot regeneration capacity in the 35S::MoIAA13-OE transgenic line was considerably lower than in the wild type. These results establish a foundation for further research on MoIAA gene function and provide useful information for improved tissue culture efficiency and molecular breeding of M. oleifera.
Collapse
|
10
|
Aux/IAA11 Is Required for UV-AB Tolerance and Auxin Sensing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232113386. [PMID: 36362171 PMCID: PMC9655273 DOI: 10.3390/ijms232113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In order to survive, plants have, over the course of their evolution, developed sophisticated acclimation and defense strategies governed by complex molecular and physiological, and cellular and extracellular, signaling pathways. They are also able to respond to various stimuli in the form of tropisms; for example, phototropism or gravitropism. All of these retrograde and anterograde signaling pathways are controlled and regulated by waves of reactive oxygen species (ROS), electrical signals, calcium, and hormones, e.g., auxins. Auxins are key phytohormones involved in the regulation of plant growth and development. Acclimation responses, which include programmed cell death induction, require precise auxin perception. However, our knowledge of these pathways is limited. The Aux/IAA family of transcriptional corepressors inhibits the growth of the plant under stress conditions, in order to maintain the balance between development and acclimation responses. In this work, we demonstrate the Aux/IAA11 involvement in auxin sensing, survival, and acclimation to UV-AB, and in carrying out photosynthesis under inhibitory conditions. The tested iaa11 mutants were more susceptible to UV-AB, photosynthetic electron transport (PET) inhibitor, and synthetic endogenous auxin. Among the tested conditions, Aux/IAA11 was not repressed by excess light stress, exclusively among its phylogenetic clade. Repression of transcription by Aux/IAA11 could be important for the inhibition of ROS formation or efficiency of ROS scavenging. We also hypothesize that the demonstrated differences in the subcellular localization of the two Aux/IAA11 protein variants might indicate their regulation by alternative splicing. Our results suggest that Aux/IAA11 plays a specific role in chloroplast retrograde signaling, since it is not repressed by high (excess) light stress, exclusively among its phylogenetic clade.
Collapse
|
11
|
Jin S, Wang X, Dong Y, Li G, Chang X, Zhang L, Jin S. The gene LpBCP increased NaHCO 3 resistance by enhancing lignin or ROS scavenging in the Nicotiana benthamiana. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1057-1065. [PMID: 35976073 DOI: 10.1111/plb.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Lilium pumilum is an excellent wildflower germplasm resource with high resistance to salinity stress. The gene LpBCP plays an important role in salinity tolerance of L. pumilum. Studying the molecular mechanism of salinity resistance in L. pumilum will provide insights into multiple aspects, including breeding better varieties, environmental protection, improving soil conditions, etc. Conventional methods were used to determine different physiological indicators of Nicotiana benthamiana after NaHCO3 treatment, i.e. chlorophyll content, soluble phenol content and lignin content. RT-qPCR was carried out to find expression of LpBCP in different organs and under abiotic stresses. DAB was used to detect H2 O2 in leaves in situ. A yeast two-hybrid system was used to screen for LpBCP interacting proteins. LpBCP was cloned from bulbs of L. pumilum. The highest expression of LpBCP was in roots and bulbs of transgenic plants. LpBCP-overexpressed plants showed less wilting, compared to WT plants. LpBCP transgenic plants have higher chlorophyll, soluble phenol and lignin content, and lower relative conductivity under 500 mM NaHCO3 stress. In addition, H2 O2 scavenging in transgenic plants was much improved, indicating increased resistance to NaHCO3 stress. Thirteen LpBCP-interacting proteins were screened using the yeast two-hybrid method and five were associated with salt stress. Based on our findings, LPBCP could be a key gene that can be used to improve L. pumilum salt tolerance.
Collapse
Affiliation(s)
- S Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- Forestry College, Northeast Forestry University, Harbin, China
| | - X Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Y Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- Aulin College, Northeast Forestry University, Harbin, China
| | - G Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - X Chang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - L Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - S Jin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
12
|
Lu D, Wu Y, Pan Q, Zhang Y, Qi Y, Bao W. Identification of key genes controlling L-ascorbic acid during Jujube ( Ziziphus jujuba Mill.) fruit development by integrating transcriptome and metabolome analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:950103. [PMID: 35991405 PMCID: PMC9386341 DOI: 10.3389/fpls.2022.950103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Chinese jujube (Ziziphus jujuba) is a vital economic tree native to China. Jujube fruit with abundant L-Ascorbic Acid (AsA) is an ideal material for studying the mechanism of AsA biosynthesis and metabolism. However, the key transcription factors regulating AsA anabolism in jujube have not been reported. Here, we used jujube variety "Mazao" as the experimental material, conducted an integrative analysis of transcriptome and metabolome to investigate changes in differential genes and metabolites, and find the key genes regulating AsA during jujube fruit growth. The results showed that AsA was mostly synthesized in the young stage and enlargement stage, ZjMDHAR gene takes an important part in the AsA recycling. Three gene networks/modules were highly correlated with AsA, among them, three genes were identified as candidates controlling AsA, including ZjERF17 (LOC107404975), ZjbZIP9 (LOC107406320), and ZjGBF4 (LOC107421670). These results provide new directions and insights for further study on the regulation mechanism of AsA in jujube.
Collapse
|
13
|
Yang F, Shi Y, Zhao M, Cheng B, Li X. ZmIAA5 regulates maize root growth and development by interacting with ZmARF5 under the specific binding of ZmTCP15/16/17. PeerJ 2022; 10:e13710. [PMID: 35855434 PMCID: PMC9288822 DOI: 10.7717/peerj.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Background The auxin indole-3-acetic acid (IAA) is a type of endogenous plant hormone with a low concentration in plants, but it plays an important role in their growth and development. The AUX/IAA gene family was found to be an early sensitive auxin gene with a complicated way of regulating growth and development in plants. The regulation of root growth and development by AUX/IAA family genes has been reported in Arabidopsis, rice and maize. Results In this study, subcellular localization indicated that ZmIAA1-ZmIAA6 primarily played a role in the nucleus. A thermogram analysis showed that AUX/IAA genes were highly expressed in the roots, which was also confirmed by the maize tissue expression patterns. In maize overexpressing ZmIAA5, the length of the main root, the number of lateral roots, and the stalk height at the seedling stage were significantly increased compared with those of the wild type, while the EMS mutant zmiaa5 was significantly reduced. The total number of roots and the dry weight of maize overexpressing ZmIAA5 at the mature stage were also significantly increased compared with those of the wild type, while those of the mutant zmiaa5 was significantly reduced. Yeast one-hybrid experiments showed that ZmTCP15/16/17 could specifically bind to the ZmIAA5 promoter region. Bimolecular fluorescence complementation and yeast two-hybridization indicated an interaction between ZmIAA5 and ZmARF5. Conclusions Taken together, the results of this study indicate that ZmIAA5 regulates maize root growth and development by interacting with ZmARF5 under the specific binding of ZmTCP15/16/17.
Collapse
Affiliation(s)
- Feiyang Yang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Yutian Shi
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Manli Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Beijiu Cheng
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
14
|
Li X, Zhang X, Shi T, Chen M, Jia C, Wang J, Hou Z, Han J, Bian S. Identification of ARF family in blueberry and its potential involvement of fruit development and pH stress response. BMC Genomics 2022; 23:329. [PMID: 35477362 PMCID: PMC9047364 DOI: 10.1186/s12864-022-08556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. Results In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5’UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19–4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. Conclusions Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08556-y.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyi Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, China
| | - Min Chen
- College of Plant Science, Jilin University, Changchun, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Research & Development Center of Blueberry, Beijing, 100083, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, China.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Liu L, Zheng Y, Feng S, Yu L, Li Y, Zong Y, Chen W, Liao F, Yang L, Guo W. Transcriptomic and Physiological Analysis Reveals the Responses to Auxin and Abscisic Acid Accumulation During Vaccinium corymbosum Flower Bud and Fruit Development. FRONTIERS IN PLANT SCIENCE 2022; 13:818233. [PMID: 35242154 PMCID: PMC8886112 DOI: 10.3389/fpls.2022.818233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Blueberry (Vaccinium corymbosum) is reputed as a rich source of health-promoting phytonutrients, which contributes to its burgeoning consumer demand and production. However, blueberries are much smaller and have lower yields than most domesticated berries, and the inherent regulatory mechanisms remain elusive. In this study, the cytological and physiological changes, as well as comparative transcriptomic analysis throughout flower and fruit development in the southern highbush blueberry cultivar 'O'Neal' were performed. 'O'Neal' hypanthium and fruit exhibited a distinctive cell proliferation pattern, and auxin accumulation was unusual throughout development, while abscisic acid (ABA) levels rapidly increased in association with anthocyanin accumulation, total phenolic reduction and fruit maturation. Transcriptomic data showed that many differentially expressed genes (DEGs) were specifically expressed at each flower bud and fruit developmental stage. Further weighted gene co-expression network analysis (WGCNA) revealed numerous DEGs that correlated with the cell numbers of outer mesocarp and columella, showed two distinctive expression patterns. Most of the DEGs involved in auxin biosynthesis, transportation and signal transduction were upregulated, and this upregulation was accompanied by cell expansion, and flower bud and fruit development. However, individual members of VcSAUR50 and VcIAA9 families might be insensitive to auxin, suggesting that these genes play a distinctive role in the growth and development of blueberry fruits. These results will support future research to better understand the flower and fruit development of southern highbush blueberry.
Collapse
Affiliation(s)
- Liangmiao Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
| | - Yiqi Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
| | - Shiji Feng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
| | - Lei Yu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
| | - Yongqiang Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Zhejiang, China
| | - Yu Zong
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Zhejiang, China
| | - Wenrong Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Zhejiang, China
| | - Fanglei Liao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Zhejiang, China
| | - Li Yang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Zhejiang, China
| | - Weidong Guo
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Zhejiang, China
| |
Collapse
|
16
|
Wang J, Wang Y, Zhang J, Ren Y, Li M, Tian S, Yu Y, Zuo Y, Gong G, Zhang H, Guo S, Xu Y. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. HORTICULTURE RESEARCH 2021; 8:214. [PMID: 34593776 PMCID: PMC8484586 DOI: 10.1038/s41438-021-00649-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 05/22/2023]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors play important roles in fruit ripening and quality. The watermelon genome encodes 80 NAC genes, and 21 of these NAC genes are highly expressed in both the flesh and vascular tissues. Among these genes, ClNAC68 expression was significantly higher in flesh than in rind. However, the intrinsic regulatory mechanism of ClNAC68 in fruit ripening and quality is still unknown. In this study, we found that ClNAC68 is a transcriptional repressor and that the repression domain is located in the C-terminus. Knockout of ClNAC68 by the CRISPR-Cas9 system decreased the soluble solid content and sucrose accumulation in mutant flesh. Development was delayed, germination was inhibited, and the IAA content was significantly decreased in mutant seeds. Transcriptome analysis showed that the invertase gene ClINV was the only gene involved in sucrose metabolism that was upregulated in mutant flesh, and expression of the indole-3-acetic acid-amido synthetase gene ClGH3.6 in the IAA signaling pathway was also induced in mutant seeds. EMSA and dual-luciferase assays showed that ClNAC68 directly bound to the promoters of ClINV and ClGH3.6 to repress their expression. These results indicated that ClNAC68 positively regulated sugar and IAA accumulation by repressing ClINV and ClGH3.6. Our findings provide new insights into the regulatory mechanisms by which NAC transcription factors affect fruit quality and seed development.
Collapse
Affiliation(s)
- Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yanping Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shaowei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Zuo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| |
Collapse
|
17
|
Xie X, Yue S, Shi B, Li H, Cui Y, Wang J, Yang P, Li S, Li X, Bian S. Comprehensive Analysis of the SBP Family in Blueberry and Their Regulatory Mechanism Controlling Chlorophyll Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:703994. [PMID: 34276754 PMCID: PMC8281205 DOI: 10.3389/fpls.2021.703994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
SQUAMOSA Promoter Binding Protein (SBP) family genes act as central players to regulate plant growth and development with functional redundancy and specificity. Addressing the diversity of the SBP family in crops is of great significance to precisely utilize them to improve agronomic traits. Blueberry is an important economic berry crop. However, the SBP family has not been described in blueberry. In the present study, twenty VcSBP genes were identified through data mining against blueberry transcriptome databases. These VcSBPs could be clustered into eight groups, and the gene structures and motif compositions are divergent among the groups and similar within each group. The VcSBPs were differentially expressed in various tissues. Intriguingly, 10 VcSBPs were highly expressed at green fruit stages and dramatically decreased at the onset of fruit ripening, implying that they are important regulators during early fruit development. Computational analysis showed that 10 VcSBPs were targeted by miR156, and four of them were further verified by degradome sequencing. Moreover, their functional diversity was studied in Arabidopsis. Noticeably, three VcSBPs significantly increased chlorophyll accumulation, and qRT-PCR analysis indicated that VcSBP13a in Arabidopsis enhanced the expression of chlorophyll biosynthetic genes such as AtDVR, AtPORA, AtPORB, AtPORC, and AtCAO. Finally, the targets of VcSBPs were computationally identified in blueberry, and the Y1H assay showed that VcSBP13a could physically bind to the promoter region of the chlorophyll-associated gene VcLHCB1. Our findings provided an overall framework for individually understanding the characteristics and functions of the SBP family in blueberry.
Collapse
Affiliation(s)
- Xin Xie
- College of Plant Science, Jilin University, Changchun, China
| | - Shaokang Yue
- College of Plant Science, Jilin University, Changchun, China
| | - Baosheng Shi
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Hongxue Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON Canada
- Department of Biology, Western University, London, ON, Canada
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Pengjie Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Shuchun Li
- Department of Pain, Second Hospital of Jilin University, Changchun, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
18
|
Huang C, Yang M, Shao D, Wang Y, Wan S, He J, Meng Z, Guan R. Fine mapping of the BnUC2 locus related to leaf up-curling and plant semi-dwarfing in Brassica napus. BMC Genomics 2020; 21:530. [PMID: 32736518 PMCID: PMC7430850 DOI: 10.1186/s12864-020-06947-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Studies of leaf shape development and plant stature have made important contributions to the fields of plant breeding and developmental biology. The optimization of leaf morphology and plant height to improve lodging resistance and photosynthetic efficiency, increase planting density and yield, and facilitate mechanized harvesting is a desirable goal in Brassica napus. Results Here, we investigated a B. napus germplasm resource exhibiting up-curled leaves and a semi-dwarf stature. In progeny populations derived from NJAU5737 and Zhongshuang 11 (ZS11), we found that the up-curled leaf trait was controlled by a dominant locus, BnUC2. We then fine mapped the BnUC2 locus onto an 83.19-kb interval on chromosome A05 using single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. We further determined that BnUC2 was a major plant height QTL that explained approximately 70% of the phenotypic variation in two BC5F3 family populations derived from NJAU5737 and ZS11. This result implies that BnUC2 was also responsible for the observed semi-dwarf stature. The fine mapping interval of BnUC2 contained five genes, two of which, BnaA05g16700D (BnaA05.IAA2) and BnaA05g16720D, were revealed by comparative sequencing to be mutated in NJAU5737. This result suggests that the candidate gene mutation (BnaA05g16700D, encoding Aux/IAA2 proteins) in the conserved Degron motif GWPPV (P63S) was responsible for the BnUC2 locus. In addition, investigation of agronomic traits in a segregated population indicated that plant height, main inflorescence length, and branching height were significantly reduced by BnUC2, whereas yield was not significantly altered. The determination of the photosynthetic efficiency showed that the BnUC2 locus was beneficial to improve the photosynthetic efficiency. Our findings may provide an effective foundation for plant type breeding in B. napus. Conclusions Using SNP and SSR markers, a dominant locus (BnUC2) related to up-curled leaves and semi-dwarf stature in B. napus has been fine mapped onto an 83.19-kb interval of chromosome A05 containing five genes. The BnaA05.IAA2 is inferred to be the candidate gene responsible for the BnUC2 locus.
Collapse
Affiliation(s)
- Chengwei Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mao Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danlei Shao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangming Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianbo He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zuqing Meng
- Tibet Agriculture and Animal Husbandry College, Linzhi, 860000, Tibet Autonomous Region, China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|