1
|
Liu H, Wang Q, Cheng T, Wan Y, Wei W, Ye X, Liu C, Sun W, Fan Y, Zou L, Guo L, Xiang D. Physiological Mechanism of EBR for Grain-Filling and Yield Formation of Tartary Buckwheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:3336. [PMID: 39683127 DOI: 10.3390/plants13233336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Tartary buckwheat is characterized by its numerous inflorescences; however, the uneven distribution of resources can lead to an overload in certain areas, significantly limiting plant productivity. Plant growth regulators effectively modulate plant growth and development. This study investigated the effects of three concentrations of brassinosteroids (EBR) on the Tartary buckwheat cultivar with high seed-setting rates, specifically Chuanqiao No. 1 (CQ1), and low seed-setting rates, namely Xiqiao No. 1 (XQ1), through field experiments. The goal was to investigate how EBR regulates buckwheat grain-filling, enhancing the seed-setting rates, and to understand the physiological mechanisms behind this improvement. The results indicated that EBR treatment followed the typical "S" type growth curve of crops, resulting in an increase in the Tartary buckwheat grain-filling rate. Varieties with high seed-setting rates demonstrated a greater capacity for grain-filling. EBR was observed to regulate hormone content, enhance the photosynthetic capacity of Tartary buckwheat, and increase yield. This was accomplished by enhancing the accumulation of photosynthetic products during the grain-filling period. Specifically, EBR elevated the activity of several key enzymes, including pre-leaf sucrose phosphate synthase (SPS), seed sucrose synthase (SS), late grain-filling acid invertase (AI), grain-filling leaf SPS, and grain SS. These changes led to an increased accumulation of sucrose and starch from photosynthetic products. In summary, the G2 concentration of EBR (0.1 mg/L) demonstrated the most significant impact on the seed-setting rates and yield enhancement of Tartary buckwheat.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Qiang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Agronomy College, Jilin Agricultural University, Changchun 130118, China
- Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, China
| | - Ting Cheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Wei Wei
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| | - Laichun Guo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Agronomy College, Jilin Agricultural University, Changchun 130118, China
- Baicheng Academy of Agricultural Sciences, No. 17, Sanhe Road, Taobei District, Baicheng 137000, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China
| |
Collapse
|
2
|
Liu XD, Zeng YY, Hasan MM, Ghimire S, Jiang H, Qi SH, Tian XQ, Fang XW. Diverse functional interactions between ABA and ethylene in plant development and responses to stress. PHYSIOLOGIA PLANTARUM 2024; 176:e70000. [PMID: 39686889 DOI: 10.1111/ppl.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Abscisic acid (ABA) and ethylene are two essential hormones that play crucial roles throughout the entire plant life cycle and in their tolerance to abiotic or biotic stress. In recent decades, increasing research has revealed that, in addition to their individual roles, these two hormones are more likely to function through their interactions, forming a complex regulatory network. More importantly, their functions change and their interactions vary from synergistic to antagonistic depending on the specific plant organ and development stage, which is less focused, compared and systematically summarized. In this review, we first introduce the general synthesis and action signaling pathways of these two plant hormones individually and their interactions in relation to seed dormancy and germination, primary root growth, shoot development, fruit ripening, leaf senescence and abscission, and stomatal movement regulation under both normal and stress conditions. A better understanding of the complex interactions between ABA and ethylene will enhance our knowledge of how plant hormones regulate development and respond to stress and may facilitate the development of crops with higher yields and greater tolerance to stressful environments through tissue-specific genetic modifications in the future.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Yuan-Yuan Zeng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Hui Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shi-Hua Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Tang R, Zhuang Z, Bian J, Ren Z, Ta W, Peng Y. GWAS and Meta-QTL Analysis of Kernel Quality-Related Traits in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2730. [PMID: 39409600 PMCID: PMC11479128 DOI: 10.3390/plants13192730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
The quality of corn kernels is crucial for their nutritional value, making the enhancement of kernel quality a primary objective of contemporary corn breeding efforts. This study utilized 260 corn inbred lines as research materials and assessed three traits associated with grain quality. A genome-wide association study (GWAS) was conducted using the best linear unbiased estimator (BLUE) for quality traits, resulting in the identification of 23 significant single nucleotide polymorphisms (SNPs). Additionally, nine genes associated with grain quality traits were identified through gene function annotation and prediction. Furthermore, a total of 697 quantitative trait loci (QTL) related to quality traits were compiled from 27 documents, followed by a meta-QTL analysis that revealed 40 meta-QTL associated with these traits. Among these, 19 functional genes and reported candidate genes related to quality traits were detected. Three significant SNPs identified by GWAS were located within the intervals of these QTL, while the remaining eight significant SNPs were situated within 2 Mb of the QTL. In summary, the findings of this study provide a theoretical framework for analyzing the genetic basis of corn grain quality-related traits and for enhancing corn quality.
Collapse
Affiliation(s)
- Rui Tang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (R.T.); (Z.Z.); (J.B.); (Z.R.); (W.T.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (R.T.); (Z.Z.); (J.B.); (Z.R.); (W.T.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianwen Bian
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (R.T.); (Z.Z.); (J.B.); (Z.R.); (W.T.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenping Ren
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (R.T.); (Z.Z.); (J.B.); (Z.R.); (W.T.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanling Ta
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (R.T.); (Z.Z.); (J.B.); (Z.R.); (W.T.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (R.T.); (Z.Z.); (J.B.); (Z.R.); (W.T.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Sivaprakasam S, Mohd Azim Khan NA, Yee Fan T, Kumarasan Y, Sicheritz-Pontén T, Petersen B, Mohd Hata E, Vadamalai G, Parimannan S, Rajandas H. Complete genome sequence of potential plant growth-promoting Bacillus altitudinis strain AIMST-CREST03 isolated from paddy field bulk soil. Microbiol Resour Announc 2024; 13:e0026124. [PMID: 38767404 PMCID: PMC11237514 DOI: 10.1128/mra.00261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
We present the complete genome of a potential plant growth-promoting bacteria Bacillus altitudinis AIMST-CREST03 isolated from a high-yielding paddy plot. The genome is 3,669,202 bp in size with a GC content of 41%. Annotation predicted 3,327 coding sequences, including several genes required for plant growth promotion.
Collapse
Affiliation(s)
- Sumitra Sivaprakasam
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - Nur Arisa Mohd Azim Khan
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tan Yee Fan
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - Yukgehnaish Kumarasan
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - Thomas Sicheritz-Pontén
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Erneeza Mohd Hata
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ganesan Vadamalai
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sivachandran Parimannan
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Heera Rajandas
- Center of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Arkhestova DK, Shomakhov BR, Shchennikova AV, Kochieva EZ. 5'-UTR allelic variants and expression of the lycopene-ɛ-cyclase LCYE gene in maize (Zea mays L.) inbred lines of Russian selection. Vavilovskii Zhurnal Genet Selektsii 2023; 27:440-446. [PMID: 37808214 PMCID: PMC10556851 DOI: 10.18699/vjgb-23-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 10/10/2023] Open
Abstract
In breeding, biofortification is aimed at enriching the edible parts of the plant with micronutrients. Within the framework of this strategy, molecular screening of collections of various crops makes it possible to determine allelic variants of genes, new alleles, and the linkage of allelic variants with morphophysiological traits. The maize (Zea mays L.) is an important cereal and silage crop, as well as a source of the main precursor of vitamin A - β-carotene, a derivative of the β,β-branch of the carotenoid biosynthesis pathway. The parallel β,ε-branch is triggered by lycopene-ε-cyclase LCYE, a low expression of which leads to an increase in provitamin A content and is associated with the variability of the 5'-UTR gene regulatory sequence. In this study, we screened a collection of 165 maize inbred lines of Russian selection for 5'- UTR LCYE allelic variants, as well as searched for the dependence of LCYE expression levels on the 5'-UTR allelic variant in the leaves of 14 collection lines. 165 lines analyzed were divided into three groups carrying alleles A2 (64 lines), A5 (31) and A6 (70), respectively. Compared to A2, allele A5 contained two deletions (at positions -267- 260 and -296-290 from the ATG codon) and a G251→T substitution, while allele A6 contained one deletion (-290-296) and two SNPs (G251→T, G265→T). Analysis of LCYE expression in the leaf tissue of seedlings from accessions of 14 lines differing in allelic variants showed no associations of the 5'-UTR LCYE allele type with the level of gene expression. Four lines carrying alleles A2 (6178-1, 6709-2, 2289-3) and A5 (5677) had a significantly higher level of LCYE gene expression (~0.018-0.037) than the other 10 analyzed lines (~0.0001-0.004), among which all three allelic variants were present.
Collapse
Affiliation(s)
- D Kh Arkhestova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia Institute of Agriculture - Branch of the Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences", Nalchik, Russia
| | - B R Shomakhov
- Institute of Agriculture - Branch of the Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences", Nalchik, Russia
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Abu-Zaitoon YM, Al-Ramamneh EADM, Al Tawaha AR, Alnaimat SM, Almomani FA. Comparative Coexpression Analysis of Indole Synthase and Tryptophan Synthase A Reveals the Independent Production of Auxin via the Cytosolic Free Indole. PLANTS (BASEL, SWITZERLAND) 2023; 12:1687. [PMID: 37111910 PMCID: PMC10142997 DOI: 10.3390/plants12081687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Indole synthase (INS), a homologous cytosolic enzyme of the plastidal tryptophan synthase A (TSA), has been reported as the first enzyme in the tryptophan-independent pathway of auxin synthesis. This suggestion was challenged as INS or its free indole product may interact with tryptophan synthase B (TSB) and, therefore, with the tryptophan-dependent pathway. Thus, the main aim of this research was to find out whether INS is involved in the tryptophan-dependent or independent pathway. The gene coexpression approach is widely recognized as an efficient tool to uncover functionally related genes. Coexpression data presented here were supported by both RNAseq and microarray platforms and, hence, considered reliable. Coexpression meta-analyses of Arabidopsis genome was implemented to compare between the coexpression of TSA and INS with all genes involved in the production of tryptophan via the chorismate pathway. Tryptophan synthase A was found to be coexpressed strongly with TSB1/2, anthranilate synthase A1/B1, phosphoribosyl anthranilate transferase1, as well as indole-3-glycerol phosphate synthase1. However, INS was not found to be coexpressed with any target genes suggesting that it may exclusively and independently be involved in the tryptophan-independent pathway. Additionally, annotation of examined genes as ubiquitous or differentially expressed were described and subunits-encoded genes available for the assembly of tryptophan and anthranilate synthase complex were suggested. The most probable TSB subunits expected to interact with TSA is TSB1 then TSB2. Whereas TSB3 is only used under limited hormone conditions to assemble tryptophan synthase complex, putative TSB4 is not expected to be involved in the plastidial synthesis of tryptophan in Arabidopsis.
Collapse
Affiliation(s)
- Yousef M. Abu-Zaitoon
- Department of Biology, Faculty of science, Al-Hussein Bin Talal University, Maan 71111, Jordan; (A.R.A.T.)
| | | | - Abdel Rahman Al Tawaha
- Department of Biology, Faculty of science, Al-Hussein Bin Talal University, Maan 71111, Jordan; (A.R.A.T.)
| | - Sulaiman M. Alnaimat
- Department of Biology, Faculty of science, Al-Hussein Bin Talal University, Maan 71111, Jordan; (A.R.A.T.)
| | - Fouad A. Almomani
- Department of Applied Biology, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
7
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
8
|
Xu Y, Qian X, Li K, Zhou T, Tian Y, Yuan L, Wang Z, Yang J. Differential roles of abscisic acid in maize roots in the adaptation to soil drought. Food Energy Secur 2023. [DOI: 10.1002/fes3.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
9
|
Jiang Z, Zhang H, Jiao P, Wei X, Liu S, Guan S, Ma Y. The Integration of Metabolomics and Transcriptomics Provides New Insights for the Identification of Genes Key to Auxin Synthesis at Different Growth Stages of Maize. Int J Mol Sci 2022; 23:13195. [PMID: 36361983 PMCID: PMC9659120 DOI: 10.3390/ijms232113195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
As a staple food crop, maize is widely cultivated worldwide. Sex differentiation and kernel development are regulated by auxin, but the mechanism regulating its synthesis remains unclear. This study explored the influence of the growth stage of maize on the secondary metabolite accumulation and gene expression associated with auxin synthesis. Transcriptomics and metabonomics were used to investigate the changes in secondary metabolite accumulation and gene expression in maize leaves at the jointing, tasseling, and pollen-release stages of plant growth. In total, 1221 differentially accumulated metabolites (DAMs) and 4843 differentially expressed genes (DEGs) were screened. KEGG pathway enrichment analyses of the DEGs and DAMs revealed that plant hormone signal transduction, tryptophan metabolism, and phenylpropanoid biosynthesis were highly enriched. We summarized the key genes and regulatory effects of the tryptophan-dependent auxin biosynthesis pathways, giving new insights into this type of biosynthesis. Potential MSTRG.11063 and MSTRG.35270 and MSTRG.21978 genes in auxin synthesis pathways were obtained. A weighted gene co-expression network analysis identified five candidate genes, namely TSB (Zm00001d046676 and Zm00001d049610), IGS (Zm00001d020008), AUX2 (Zm00001d006283), TAR (Zm00001d039691), and YUC (Zm00001d025005 and Zm00001d008255), which were important in the biosynthesis of both tryptophan and auxin. This study provides new insights for understanding the regulatory mechanism of auxin synthesis in maize.
Collapse
Affiliation(s)
- Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
| | - Honglin Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
| | - Xiaotong Wei
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Jiao Y, Xie R, Zhang H. Identification of potential pathways associated with indole-3-butyric acid in citrus bud germination via transcriptomic analysis. Funct Integr Genomics 2021; 21:619-631. [PMID: 34476672 DOI: 10.1007/s10142-021-00802-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/27/2022]
Abstract
Indole-3-butyric acid (IBA) is widely used to encourage root development in cuttings of general field crops, vegetables, forest trees, fruit trees, and flowers. However, previous studies reported that IBA inhibited the germination of citrus buds via an unknown molecular mechanism. This study aimed to unravel the regulatory mechanisms underlying this inhibition. Citrus apical buds were sprayed with 100 mg ⋅ L-1 IBA. Subsequently, the plant hormone levels were analyzed, and transcriptomic analysis was performed. The results identified 3325 upregulated genes and 2926 downregulated genes in the citrus apical buds. The gene set enrichment analysis method was used to determine the Gene Ontology related to the treatment. Genes were enriched into 157 sets, including 17 upregulated sets and 140 downregulated sets, after indole butyric acid treatment. The upregulated gene sets were related to glucose import, sugar transmembrane transporter activity, and photosynthesis. The downregulated genes were mainly related to the ribosomal subunit and cell cycle process under butyric acid treatment. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed the enrichment of 11 pathways. Of note, genes related to the ribosome and proteasome pathways were significantly downregulated. Only one pathway was significantly upregulated: the autophagy pathway. Overall, these results provided insights into the molecular mechanisms underpinning the IBA-mediated inhibition of citrus bud germination inhibition. Also, the study provided a large transcriptomics dataset that could be used for further research.
Collapse
Affiliation(s)
- Yun Jiao
- Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, 315040, China.
| | - Rangjin Xie
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Hongjin Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| |
Collapse
|