1
|
Silva JMD. Understanding Plants' Language: A Contribute to Tackling Plant Blindness. FRONT BIOSCI-LANDMRK 2025; 30:36249. [PMID: 40018946 DOI: 10.31083/fbl36249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025]
Affiliation(s)
- Jorge Marques da Silva
- Department of Plant Biology and Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Loiseau B, Carrière SD, Jougnot D, Singha K, Mary B, Delpierre N, Guérin R, Martin-StPaul NK. The geophysical toolbox applied to forest ecosystems - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165503. [PMID: 37454861 DOI: 10.1016/j.scitotenv.2023.165503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Studying the forest subsurface is a challenge because of its heterogeneous nature and difficult access. Traditional approaches used by ecologists to characterize the subsurface have a low spatial representativity. This review article illustrates how geophysical techniques can and have been used to get new insights into forest ecology. Near-surface geophysics offers a wide range of methods to characterize the spatial and temporal variability of subsurface properties in a non-destructive and integrative way, each with its own advantages and disadvantages. These techniques can be used alone or combined to take advantage of their complementarity. Our review led us to define three topics how near-surface geophysics can support forest ecology studies: 1) detection of root systems, 2) monitoring of water quantity and dynamics, and 3) characterisation of spatial heterogeneity in subsurface properties at the stand level. The number of forest ecology studies using near-surface geophysics is increasing and this multidisciplinary approach opens new opportunities and perspectives for improving quantitative assessment of biophysical properties and exploring forest response to the environment and adaptation to climate change.
Collapse
Affiliation(s)
- Bertille Loiseau
- UMR METIS, Sorbonne Université, UPMC, CNRS, EPHE, 75005 Paris, France.
| | - Simon D Carrière
- UMR METIS, Sorbonne Université, UPMC, CNRS, EPHE, 75005 Paris, France
| | - Damien Jougnot
- UMR METIS, Sorbonne Université, UPMC, CNRS, EPHE, 75005 Paris, France
| | - Kamini Singha
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Benjamin Mary
- Geoscience Department, University of Padova, 35100 Padova, Italy
| | - Nicolas Delpierre
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France; Institut Universitaire de France (IUF), France
| | - Roger Guérin
- UMR METIS, Sorbonne Université, UPMC, CNRS, EPHE, 75005 Paris, France
| | | |
Collapse
|
3
|
Electrical Responses of Pinus halepensis Mill. as an Indicator of Wildfire Risk in Mediterranean Forests by Complementing Live Fuel Moisture. FORESTS 2022. [DOI: 10.3390/f13081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pinus halepensis forests, as Mediterranean-type ecosystems, are subject to high levels of wildfire risk in times of drought, with meteorological conditions of water stress and very high temperatures, mainly in summer. Considering the difficulty of knowing the phenological state of this species, the objective of this research was to evaluate the possibility of implementing the electrical responses (voltage and short-circuit current) as a variable in fire risk management models, compared to live fuel moisture. On the one hand, the obtained results demonstrate non-significant differences between the moisture content of the different fractions of the living branches (base and half of the branch and live fuel), even in times of drought with hydric stress and very high temperatures. Live fuel moisture of Pinus halepensis does not show significant seasonal variations under the influence of extreme fire risk factors. For this reason, it should be complemented with other variables for fire risk management models. On the other hand, the differences registered in the electrical signal show oscillations with significant variations, which are strongly correlated with the periods of extremely favourable meteorological conditions for wildfires. So, the voltages measured show ranges that correspond with great accuracy to the FWI. Voltage variation is dependent on the hydraulic dynamic plant behaviour and a result of the physiological response of pine trees to abiotic stress of drought. It is an easy-to-measure electrical parameter as well as a very reliable indicator with a high correlation with wildfire risk. Thus, electrical responses could add more knowledge about the phenological state of the trees in dependence on stress climatic conditions, allowing integration of these variables in the preventive wildfire modelling and management.
Collapse
|