1
|
Luque-Uría Á, Calvo MV, Visioli F, Fontecha J. Milk fat globule membrane and its polar lipids: reviewing preclinical and clinical trials on cognition. Food Funct 2024; 15:6783-6797. [PMID: 38828877 DOI: 10.1039/d4fo00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In most parts of the world, life expectancy is increasing thanks to improved healthcare, public health policies, nutrition, and treatment. This increase in lifespan is often not accompanied by an increase in health span, which severely affects people as they age. One notable consequence of this is the increasing prevalence of neurodegenerative diseases such as mild cognitive impairment, dementia, and Alzheimer's disease. Therefore, dietary and pharmaceutical measures must be taken to reduce the burden of such pathologies. Among the different types of nutrients found in the diet, lipids and especially polar lipids are very important for cognition due to their abundance in the brain. Amid the most studied sources of polar lipids, milk fat globule membrane (MFGM) stands out as it is abundant in industrial by-products such as buttermilk. In this narrative review, we discuss the latest, i.e. less than five years old, scientific evidence on the use of MFGM and its polar lipids in cognitive neurodevelopment in early life and their potential effect in preventing neurodegeneration in old age. We conclude that MFGM is an interesting, abundant and exploitable source of relatively inexpensive bioactive molecules that could be properly formulated and utilized in the areas of neurodevelopment and cognitive decline. Sufficiently large randomized controlled trials are required before health-related statements can be made. However, research in this area is progressing rapidly and the evidence gathered points to biological, health-promoting effects.
Collapse
Affiliation(s)
- Álvaro Luque-Uría
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - María V Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy.
- IMDEA-Food, Madrid 28049, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
2
|
Krokidis MG, Pucha KA, Mustapic M, Exarchos TP, Vlamos P, Kapogiannis D. Lipidomic Analysis of Plasma Extracellular Vesicles Derived from Alzheimer's Disease Patients. Cells 2024; 13:702. [PMID: 38667317 PMCID: PMC11049154 DOI: 10.3390/cells13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/31/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Analysis of blood-based indicators of brain health could provide an understanding of early disease mechanisms and pinpoint possible intervention strategies. By examining lipid profiles in extracellular vesicles (EVs), secreted particles from all cells, including astrocytes and neurons, and circulating in clinical samples, important insights regarding the brain's composition can be gained. Herein, a targeted lipidomic analysis was carried out in EVs derived from plasma samples after removal of lipoproteins from individuals with Alzheimer's disease (AD) and healthy controls. Differences were observed for selected lipid species of glycerolipids (GLs), glycerophospholipids (GPLs), lysophospholipids (LPLs) and sphingolipids (SLs) across three distinct EV subpopulations (all-cell origin, derived by immunocapture of CD9, CD81 and CD63; neuronal origin, derived by immunocapture of L1CAM; and astrocytic origin, derived by immunocapture of GLAST). The findings provide new insights into the lipid composition of EVs isolated from plasma samples regarding specific lipid families (MG, DG, Cer, PA, PC, PE, PI, LPI, LPE, LPC), as well as differences between AD and control individuals. This study emphasizes the crucial role of plasma EV lipidomics analysis as a comprehensive approach for identifying biomarkers and biological targets in AD and related disorders, facilitating early diagnosis and potentially informing novel interventions.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Laboratory of Bioinformatics and Human Electrophysiology, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.); (P.V.)
| | - Krishna A. Pucha
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIA/NIH), Baltimore, MD 21224, USA; (K.A.P.); (M.M.)
| | - Maja Mustapic
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIA/NIH), Baltimore, MD 21224, USA; (K.A.P.); (M.M.)
| | - Themis P. Exarchos
- Laboratory of Bioinformatics and Human Electrophysiology, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.); (P.V.)
| | - Panagiotis Vlamos
- Laboratory of Bioinformatics and Human Electrophysiology, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.); (P.V.)
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIA/NIH), Baltimore, MD 21224, USA; (K.A.P.); (M.M.)
| |
Collapse
|
3
|
Forte A, Lara S, Peña-Bautista C, Baquero M, Cháfer-Pericás C. New approach for early and specific Alzheimer disease diagnosis from different plasma biomarkers. Clin Chim Acta 2024; 556:117842. [PMID: 38417780 DOI: 10.1016/j.cca.2024.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Alzheimer Disease (AD) is a complex pathology, in which several biochemical pathways could be involved. Therefore, the development of clinical studies combining different nature biomarkers in an AD diagnosis approach is required. Specifically, the present study evaluated blood biomarkers from different molecular pathways (epigenomics, lipid metabolism, lipid peroxidation), to obtain an early and specific AD diagnosis approach. METHODS The participants were classified into early AD (n = 53), and non-AD (healthy controls, other dementias) (n = 83). Blood samples were collected and biochemical determinations (microRNAs, lipids, lipid peroxidation compounds) were carried out by quantitative PCR and liquid chromatography coupled to mass spectrometry, respectively. Then, a logistic regression model with a Bayesian variable selection procedure was developed. RESULTS The Bayesian variable selection procedure for microRNAs did not show any relevant variable. Therefore, microRNA biomarkers were excluded. So, the developed model considered only lipids and lipid peroxidation compounds. The corresponding selected variables were age, 18:0 LPC, PGE2, isoprostanes and, isofurans. The validated model (by leave-one-out cross-validation) provided satisfactory diagnosis indexes (AUC 0.83, Sensitivity 87 %, Specificity 79 %). CONCLUSION The developed model included biomarkers from different pathways (lipid metabolism, oxidative stress), achieving a promising approach to early, specific and, minimally invasive AD diagnosis. Nevertheless, further work to validate clinically these preliminary results with an external cohort is required. Also, the integration of different compounds coming from several biochemical pathways could constitute a relevant research field for the development of AD therapeutic targets.
Collapse
Affiliation(s)
- Anabel Forte
- Faculty of Mathematical Sciences, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Sergio Lara
- Faculty of Mathematical Sciences, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carmen Peña-Bautista
- Alzheimer's Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Miguel Baquero
- Alzheimer's Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | | |
Collapse
|
4
|
Nie Y, Chu C, Qin Q, Shen H, Wen L, Tang Y, Qu M. Lipid metabolism and oxidative stress in patients with Alzheimer's disease and amnestic mild cognitive impairment. Brain Pathol 2024; 34:e13202. [PMID: 37619589 PMCID: PMC10711261 DOI: 10.1111/bpa.13202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Lipid metabolism and oxidative stress are key mechanisms in Alzheimer's disease (AD). The link between plasma lipid metabolites and oxidative stress in AD patients is poorly understood. This study was to identify markers that distinguish AD and amnestic mild cognitive impairment (aMCI) from NC, and to reveal potential links between lipid metabolites and oxidative stress. We performed non-targeted lipid metabolism analysis of plasma from patients with AD, aMCI, and NC using LC-MS/MS. The plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) levels were assessed. We found significant differences in lipid metabolism between patients with AD and aMCI compared to those in NC. AD severity is associated with lipid metabolites, especially TG (18:0_16:0_18:0) + NH4, TG (18:0_16:0_16:0) + NH4, LPC(16:1e)-CH3, and PE (20:0_20:4)-H. SPH (d16:0) + H, SPH (d18:1) + H, and SPH (d18:0) + H were high-performance markers to distinguish AD and aMCI from NC. The AUC of three SPHs combined to predict AD was 0.990, with specificity and sensitivity as 0.949 and 1, respectively; the AUC of three SPHs combined to predict aMCI was 0.934, with specificity and sensitivity as 0.900, 0.981, respectively. Plasma MDA concentrations were higher in the AD group than in the NC group (p = 0.003), whereas plasma SOD levels were lower in the AD (p < 0.001) and aMCI (p = 0.045) groups than in NC, and GSH-Px activity were higher in the AD group than in the aMCI group (p = 0.007). In addition, lipid metabolites and oxidative stress are widely associated. In conclusion, this study distinguished serum lipid metabolism in AD, aMCI, and NC subjects, highlighting that the three SPHs can distinguish AD and aMCI from NC. Additionally, AD patients showed elevated oxidative stress, and there are complex interactions between lipid metabolites and oxidative stress.
Collapse
Affiliation(s)
- Yuting Nie
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Changbiao Chu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Qi Qin
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Huixin Shen
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Lulu Wen
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yi Tang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Miao Qu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Gao F, Li F, Wang J, Yu H, Li X, Chen H, Wang J, Qin D, Li Y, Liu S, Zhang X, Wang ZH. SERS-Based Optical Nanobiosensors for the Detection of Alzheimer's Disease. BIOSENSORS 2023; 13:880. [PMID: 37754114 PMCID: PMC10526933 DOI: 10.3390/bios13090880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, impacting millions worldwide. However, its complex neuropathologic features and heterogeneous pathophysiology present significant challenges for diagnosis and treatment. To address the urgent need for early AD diagnosis, this review focuses on surface-enhanced Raman scattering (SERS)-based biosensors, leveraging the excellent optical properties of nanomaterials to enhance detection performance. These highly sensitive and noninvasive biosensors offer opportunities for biomarker-driven clinical diagnostics and precision medicine. The review highlights various types of SERS-based biosensors targeting AD biomarkers, discussing their potential applications and contributions to AD diagnosis. Specific details about nanomaterials and targeted AD biomarkers are provided. Furthermore, the future research directions and challenges for improving AD marker detection using SERS sensors are outlined.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
6
|
Lista S, González-Domínguez R, López-Ortiz S, González-Domínguez Á, Menéndez H, Martín-Hernández J, Lucia A, Emanuele E, Centonze D, Imbimbo BP, Triaca V, Lionetto L, Simmaco M, Cuperlovic-Culf M, Mill J, Li L, Mapstone M, Santos-Lozano A, Nisticò R. Integrative metabolomics science in Alzheimer's disease: Relevance and future perspectives. Ageing Res Rev 2023; 89:101987. [PMID: 37343679 DOI: 10.1016/j.arr.2023.101987] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Alzheimer's disease (AD) is determined by various pathophysiological mechanisms starting 10-25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics - coupled with existing accessible biomarkers used for AD screening and diagnosis - can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain.
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Madrid, Spain
| | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Luana Lionetto
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Simmaco
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Miroslava Cuperlovic-Culf
- Digital Technologies Research Center, National Research Council, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jericha Mill
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| |
Collapse
|
7
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Liu L, Zhang X, Jiang N, Liu Y, Wang Q, Jiang G, Li X, Zhao L, Zhai Q. Plasma Lipoprotein-Associated Phospholipase A2 Affects Cognitive Impairment in Patients with Cerebral Microbleeds. Neuropsychiatr Dis Treat 2023; 19:635-646. [PMID: 36987525 PMCID: PMC10040165 DOI: 10.2147/ndt.s401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Purpose The plasma lipoprotein-associated phospholipase A2 (Lp-PLA2) is an inflammatory biomarker of cerebral microbleeds (CMBs) and may be related to the occurrence, development, and prognosis of cognitive impairment. The present study aimed to investigate the impact of plasma Lp-PLA2 level on the cognitive impairment in patients with CMBs. Methods In this study, 213 patients with CMBs confirmed by 3.0 T brain magnetic resonance imaging (MRI) were analyzed. Lp-PLA2 levels were determined by magnetic particle chemiluminescence immunoassay technology, and cognitive function was assessed using the Montreal Cognitive Assessment Scale (MoCA). The cognitive functions of patients with CMBs were divided into three groups according to the MoCA scale, including normal cognition (NC), mild cognitive impairment (MCI), and moderate-severe cognitive impairment (MSCI). Clinical, laboratory and radiological data of the three groups were analysed. The relationship between plasma Lp-PLA2 and MoCA score in patients with CMBs was investigated through rank correlation analysis and multivariate regression analysis, and receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of Lp-PLA2. Results CMBs were detected in 213 (30.2%) of 705 patients who underwent 3.0 T MRI. Multiple comparisons showed that plasma Lp-PLA2 in patients with CMBs with normal cognitive scores was significantly lower than that in the other two groups with cognitive impairment (p < 0.05). In the single factor correlation analysis, high level of plasma Lp-PLA2 was negatively correlated with the decrease of MoCA score in patients with CMBs (r =-0.389, p < 0.01). Multivariate regression analysis showed that high plasma Lp-PLA2 was an independent risk factor for a low MoCA score in patients with CMBs (odds ratio [OR]=1.014; 95% confidence interval [CI], 1.002-1.026; p=0.025). Conclusion A high level of plasma Lp-PLA2 is positively correlated with the generation of cognitive impairment in patients with CMBs and negatively correlated with the degree of impairment. Plasma Lp-PLA2 is an important indicator of cognitive impairment in patients with CMBs and may provide a therapeutic target for preventing CMB-induced cognitive impairment.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Xiaojiu Zhang
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
- Department of Neurology, Hongze People’s Hospital, Huai’an, Jiangsu, People’s Republic of China
| | - Nan Jiang
- Department of Neurology, Lianshui PEople’s Hospital Affiliated to Kangda College of Nanjing Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Yufeng Liu
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Qing Wang
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Guanghui Jiang
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Xuejing Li
- Rehabilitation Centre, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Liandong Zhao
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
- Correspondence: Liandong Zhao; Qijin Zhai, Email ;
| | - Qijin Zhai
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| |
Collapse
|
9
|
Casas-Fernández E, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Lipids as Early and Minimally Invasive Biomarkers for Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1613-1631. [PMID: 34727857 PMCID: PMC9881089 DOI: 10.2174/1570159x19666211102150955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Specifically, typical late-onset AD is a sporadic form with a complex etiology that affects over 90% of patients. The current gold standard for AD diagnosis is based on the determination of amyloid status by analyzing cerebrospinal fluid samples or brain positron emission tomography. These procedures can be used widely as they have several disadvantages (expensive, invasive). As an alternative, blood metabolites have recently emerged as promising AD biomarkers. Small molecules that cross the compromised AD blood-brain barrier could be determined in plasma to improve clinical AD diagnosis at early stages through minimally invasive techniques. Specifically, lipids could play an important role in AD since the brain has a high lipid content, and they are present ubiquitously inside amyloid plaques. Therefore, a systematic review was performed with the aim of identifying blood lipid metabolites as potential early AD biomarkers. In conclusion, some lipid families (fatty acids, glycerolipids, glycerophospholipids, sphingolipids, lipid peroxidation compounds) have shown impaired levels at early AD stages. Ceramide levels were significantly higher in AD subjects, and polyunsaturated fatty acids levels were significantly lower in AD. Also, high arachidonic acid levels were found in AD patients in contrast to low sphingomyelin levels. Consequently, these lipid biomarkers could be used for minimally invasive and early AD clinical diagnosis.
Collapse
Affiliation(s)
| | | | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Health Research Institute La Fe, Valencia, Spain;,Address correspondence to this author at the Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, Valencia E46026, Spain;, Tel: +34-96 1246721; E-mail:
| |
Collapse
|
10
|
Khan MJ, Chung NA, Hansen S, Dumitrescu L, Hohman TJ, Kamboh MI, Lopez OL, Robinson RAS. Targeted Lipidomics To Measure Phospholipids and Sphingomyelins in Plasma: A Pilot Study To Understand the Impact of Race/Ethnicity in Alzheimer's Disease. Anal Chem 2022; 94:4165-4174. [PMID: 35235294 PMCID: PMC9126486 DOI: 10.1021/acs.analchem.1c03821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The number of people suffering from Alzheimer's disease (AD) is increasing rapidly every year. One aspect of AD that is often overlooked is the disproportionate incidence of AD among African American/Black populations. With the recent development of novel assays for lipidomics analysis in recent times, there has been a drastic increase in the number of studies focusing on changes of lipids in AD. However, very few of these studies have focused on or even included samples from African American/Black individuals samples. In this study, we aimed to determine if the lipidome in AD is universal across non-Hispanic White and African American/Black individuals. To accomplish this, a targeted mass spectrometry lipidomics analysis was performed on plasma samples (N = 113) obtained from cognitively normal (CN, N = 54) and AD (N = 59) individuals from African American/Black (N = 56) and non-Hispanic White (N = 57) backgrounds. Five lipids (PS 18:0_18:0, PS 18:0_20:0, PC 16:0_22:6, PC 18:0_22:6, and PS 18:1_22:6) were altered between AD and CN sample groups (p value < 0.05). Upon racial stratification, there were notable differences in lipids that were unique to African American/Black or non-Hispanic White individuals. PS 20:0_20:1 was reduced in AD in samples from non-Hispanic White but not African American/Black adults. We also tested whether race/ethnicity significantly modified the association between lipids and AD status by including a race × diagnosis interaction term in a linear regression model. PS 20:0_20:1 showed a significant interaction (p = 0.004). The discovery of lipid changes in AD in this study suggests that identifying relevant lipid biomarkers for diagnosis will require diversity in sample cohorts.
Collapse
Affiliation(s)
- Mostafa J Khan
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nadjali A Chung
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shania Hansen
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - M Ilyas Kamboh
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
11
|
Pathak N, Vimal SK, Tandon I, Agrawal L, Hongyi C, Bhattacharyya S. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment. Metab Brain Dis 2022; 37:67-104. [PMID: 34719771 DOI: 10.1007/s11011-021-00800-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases (NDs) are characterised by progressive dysfunction of synapses, neurons, glial cells and their networks. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormalities. The most common neurodegenerative disorders are amyloidosis, tauopathies, a-synucleinopathy, and TAR DNA-binding protein 43 (TDP-43) proteopathy. The protein abnormalities in these disorders have abnormal conformational properties along with altered cellular mechanisms, and they exhibit motor deficit, mitochondrial malfunction, dysfunctions in autophagic-lysosomal pathways, synaptic toxicity, and more emerging mechanisms such as the roles of stress granule pathways and liquid-phase transitions. Finally, for each ND, microglial cells have been reported to be implicated in neurodegeneration, in particular, because the microglial responses can shift from neuroprotective to a deleterious role. Growing experimental evidence suggests that abnormal protein conformers act as seed material for oligomerization, spreading from cell to cell through anatomically connected neuronal pathways, which may in part explain the specific anatomical patterns observed in brain autopsy sample. In this review, we mention the human pathology of select neurodegenerative disorders, focusing on how neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) represent a great healthcare problem worldwide and are becoming prevalent because of the increasing aged population. Despite many studies have focused on their etiopathology, the exact cause of these diseases is still largely unknown and until now with the only available option of symptomatic treatments. In this review, we aim to report the systematic and clinically correlated potential biomarker candidates. Although future studies are necessary for their use in early detection and progression in humans affected by NDs, the promising results obtained by several groups leads us to this idea that biomarkers could be used to design a potential therapeutic approach and preclinical clinical trials for the treatments of NDs.
Collapse
Affiliation(s)
- Nishit Pathak
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Ishi Tandon
- Amity University Jaipur, Rajasthan, Jaipur, Rajasthan, India
| | - Lokesh Agrawal
- Graduate School of Comprehensive Human Sciences, Kansei Behavioural and Brain Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Cao Hongyi
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
12
|
González‐Domínguez R, Castellano‐Escuder P, Carmona F, Lefèvre‐Arbogast S, Low DY, Du Preez A, Ruigrok SR, Manach C, Urpi‐Sarda M, Korosi A, Lucassen PJ, Aigner L, Pallàs M, Thuret S, Samieri C, Sánchez‐Pla A, Andres‐Lacueva C. Food and Microbiota Metabolites Associate with Cognitive Decline in Older Subjects: A 12-Year Prospective Study. Mol Nutr Food Res 2021; 65:e2100606. [PMID: 34661340 PMCID: PMC11475530 DOI: 10.1002/mnfr.202100606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/11/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Diet is considered an important modulator of cognitive decline and dementia, but the available evidence is, however, still fragmented and often inconsistent. METHODS AND RESULTS The article studies the long-term prospective Three-City Cohort, which consists of two separate nested case-control sample sets from different geographic regions (Bordeaux, n = 418; Dijon, n = 424). Cognitive decline is evaluated through five neuropsychological tests (Mini-Mental State Examination, Benton Visual Retention Test, Isaac's Set Test, Trail-Making Test part A, and Trail-Making Test part B). The food-related and microbiota-derived circulating metabolome is studied in participants free of dementia at baseline, by subjecting serum samples to large-scale quantitative metabolomics analysis. A protective association is found between metabolites derived from cocoa, coffee, mushrooms, red wine, the microbial metabolism of polyphenol-rich foods, and cognitive decline, as well as a negative association with metabolites related to unhealthy dietary components, such as artificial sweeteners and alcohol. CONCLUSION These results provide insight into the early metabolic events that are associated with the later risk to develop cognitive decline within the crosstalk between diet, gut microbiota and the endogenous metabolism, which can help identify potential targets for preventive and therapeutic strategies to preserve cognitive health.
Collapse
Affiliation(s)
- Raúl González‐Domínguez
- Biomarkers and Nutrimetabolomics LaboratoryFaculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelona08028Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes)Instituto de Salud Carlos IIIMadrid28029Spain
| | - Pol Castellano‐Escuder
- Biomarkers and Nutrimetabolomics LaboratoryFaculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelona08028Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes)Instituto de Salud Carlos IIIMadrid28029Spain
- Department of GeneticsMicrobiology and StatisticsUniversity of BarcelonaBarcelona08028Spain
| | - Francisco Carmona
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes)Instituto de Salud Carlos IIIMadrid28029Spain
- Department of GeneticsMicrobiology and StatisticsUniversity of BarcelonaBarcelona08028Spain
| | - Sophie Lefèvre‐Arbogast
- University of BordeauxInsermBordeaux Population Health Research CenterUMR 1219BordeauxF‐33000France
| | - Dorrain Y. Low
- Université Clermont AuvergneINRAEUNHClermontFerrandF‐63000France
| | - Andrea Du Preez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonSE5 9NUUK
| | - Silvie R. Ruigrok
- Brain Plasticity GroupSwammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Claudine Manach
- Université Clermont AuvergneINRAEUNHClermontFerrandF‐63000France
| | - Mireia Urpi‐Sarda
- Biomarkers and Nutrimetabolomics LaboratoryFaculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelona08028Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes)Instituto de Salud Carlos IIIMadrid28029Spain
| | - Aniko Korosi
- Brain Plasticity GroupSwammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Paul J. Lucassen
- Brain Plasticity GroupSwammerdam Institute for Life SciencesCenter for NeuroscienceUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Ludwig Aigner
- Institute of Molecular Regenerative MedicineSpinal Cord Injury and Tissue Regeneration Center SalzburgParacelsus Medical UniversitySalzburg5020Austria
| | - Mercè Pallàs
- Pharmacology SectionDepartment of PharmacologyToxicology and Medicinal ChemistryFaculty of Pharmacy and Food Sciences, and Institut de NeurociènciesUniversity of BarcelonaBarcelona08028Spain
| | - Sandrine Thuret
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonSE5 9NUUK
| | - Cécilia Samieri
- University of BordeauxInsermBordeaux Population Health Research CenterUMR 1219BordeauxF‐33000France
| | - Alex Sánchez‐Pla
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes)Instituto de Salud Carlos IIIMadrid28029Spain
- Department of GeneticsMicrobiology and StatisticsUniversity of BarcelonaBarcelona08028Spain
| | - Cristina Andres‐Lacueva
- Biomarkers and Nutrimetabolomics LaboratoryFaculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelona08028Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes)Instituto de Salud Carlos IIIMadrid28029Spain
| |
Collapse
|
13
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
14
|
Baumel BS, Doraiswamy PM, Sabbagh M, Wurtman R. Potential Neuroregenerative and Neuroprotective Effects of Uridine/Choline-Enriched Multinutrient Dietary Intervention for Mild Cognitive Impairment: A Narrative Review. Neurol Ther 2021; 10:43-60. [PMID: 33368017 PMCID: PMC8139993 DOI: 10.1007/s40120-020-00227-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/02/2020] [Indexed: 01/21/2023] Open
Abstract
In mild cognitive impairment (MCI) due to Alzheimer disease (AD), also known as prodromal AD, there is evidence for a pathologic shortage of uridine, choline, and docosahexaenoic acid [DHA]), which are key nutrients needed by the brain. Preclinical and clinical evidence shows the importance of nutrient bioavailability to support the development and maintenance of brain structure and function in MCI and AD. Availability of key nutrients is limited in MCI, creating a distinct nutritional need for uridine, choline, and DHA. Evidence suggests that metabolic derangements associated with ageing and disease-related pathology can affect the body's ability to generate and utilize nutrients. This is reflected in lower levels of nutrients measured in the plasma and brains of individuals with MCI and AD dementia, and progressive loss of cognitive performance. The uridine shortage cannot be corrected by normal diet, making uridine a conditionally essential nutrient in affected individuals. It is also challenging to correct the choline shortfall through diet alone, because brain uptake from the plasma significantly decreases with ageing. There is no strong evidence to support the use of single-agent supplements in the management of MCI due to AD. As uridine and choline work synergistically with DHA to increase phosphatidylcholine formation, there is a compelling rationale to combine these nutrients. A multinutrient enriched with uridine, choline, and DHA developed to support brain function has been evaluated in randomized controlled trials covering a spectrum of dementia from MCI to moderate AD. A randomized controlled trial in subjects with prodromal AD showed that multinutrient intervention slowed brain atrophy and improved some measures of cognition. Based on the available clinical evidence, nutritional intervention should be considered as a part of the approach to the management of individuals with MCI due to AD, including adherence to a healthy, balanced diet, and consideration of evidence-based multinutrient supplements.
Collapse
Affiliation(s)
- Barry S Baumel
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Marwan Sabbagh
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, NV, USA
| | - Richard Wurtman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Mechanistic Insights into Alzheimer's Disease Unveiled through the Investigation of Disturbances in Central Metabolites and Metabolic Pathways. Biomedicines 2021; 9:biomedicines9030298. [PMID: 33799385 PMCID: PMC7998757 DOI: 10.3390/biomedicines9030298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrophilic metabolites are closely involved in multiple primary metabolic pathways and, consequently, play an essential role in the onset and progression of multifactorial human disorders, such as Alzheimer’s disease. This review article provides a comprehensive revision of the literature published on the use of mass spectrometry-based metabolomics platforms for approaching the central metabolome in Alzheimer’s disease research, including direct mass spectrometry, gas chromatography-mass spectrometry, hydrophilic interaction liquid chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Overall, mounting evidence points to profound disturbances that affect a multitude of central metabolic pathways, such as the energy-related metabolism, the urea cycle, the homeostasis of amino acids, fatty acids and nucleotides, neurotransmission, and others.
Collapse
|
16
|
Agarwal M, Khan S. Plasma Lipids as Biomarkers for Alzheimer's Disease: A Systematic Review. Cureus 2020; 12:e12008. [PMID: 33457117 PMCID: PMC7797449 DOI: 10.7759/cureus.12008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is caused by several risk factors leading to dementia. It's diagnosis usually depends on clinical presentation and certain biomarkers in the cerebrospinal fluid (CSF). The brain has a high content of cholesterol and the metabolism of cholesterol in the brain can be associated with beta-amyloid plaques formation, which is seen in Alzheimer's disease. Given these implications, we studied if plasma lipid levels can vary in Alzheimer's disease and if these can be used as biomarkers to diagnose and predict the progression of Alzheimer's disease. Certain mutations in the brain cholesterol transport receptors and proteins and their association with Alzheimer's were also studied. This systematic review abides by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched multiple databases, such as Pubmed, Google Scholar, Pubmed central, ScienceDirect, Web of Science, and Medline with the help of keywords like Alzheimer's disease, cognitive impairment, plasma lipid biomarkers, cholesterol, brain cholesterol metabolism separately and in combination with each other. We collected 49 quality appraised articles on the association between plasma lipids and Alzheimer's disease and the genetic mutations in alleles related to cholesterol metabolism and Alzheimer's disease by applying the inclusion and exclusion criteria. Based on the finding of the studies reviewed, we found an association between plasma lipids, polymorphisms in genes associated with cholesterol transport, and Alzheimer's disease. Increased serum low-density lipoprotein (LDL-C), triglycerides (TG), total cholesterol (TC), sphingolipids, 24S hydroxycholesterol (24S-HC), 27O hydroxycholesterol (27O-HC) was associated with Alzheimer's. Decreased high-density lipoprotein (HDL-C) and phospholipids were noticed. Genetic mutations in apolipoprotein E (ApoE), apolipoprotein B (ApoB), apolipoprotein A (ApoA), ATP binding cassette transporter 1 (ABCA1), ATP binding cassette transporter 7 (ABCA7), amyloid precursor protein (APP), cytochrome P450 family 46 subfamilies A member 1 (CYP46A1), presenilin 1 (PSEN1), presenilin 2 (PSEN2) are also associated with increased risk of Alzheimer's disease. This study found an association between plasma lipids and Alzheimer's, proving that plasma lipids can be used as biomarkers for early diagnosis of Alzheimer's disease. It may also help predict the prognosis and stage the disease severity. Further studies are needed to find out the exact mechanism behind these changes.
Collapse
Affiliation(s)
- Mehak Agarwal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
17
|
Lanznaster D, Veyrat-Durebex C, Vourc’h P, Andres CR, Blasco H, Corcia P. Metabolomics: A Tool to Understand the Impact of Genetic Mutations in Amyotrophic Lateral Sclerosis. Genes (Basel) 2020; 11:genes11050537. [PMID: 32403313 PMCID: PMC7288444 DOI: 10.3390/genes11050537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolomics studies performed in patients with amyotrophic lateral sclerosis (ALS) reveal a set of distinct metabolites that can shed light on the pathological alterations taking place in each individual. Metabolites levels are influenced by disease status, and genetics play an important role both in familial and sporadic ALS cases. Metabolomics analysis helps to unravel the differential impact of the most common ALS-linked genetic mutations (as C9ORF72, SOD1, TARDBP, and FUS) in specific signaling pathways. Further, studies performed in genetic models of ALS reinforce the role of TDP-43 pathology in the vast majority of ALS cases. Studies performed in differentiated cells from ALS-iPSC (induced Pluripotent Stem Cells) reveal alterations in the cell metabolism that are also found in ALS models and ultimately in ALS patients. The development of metabolomics approaches in iPSC derived from ALS patients allow addressing and ultimately understanding the pathological mechanisms taking place in any patient. Lately, the creation of a "patient in a dish" will help to identify patients that may benefit from specific treatments and allow the implementation of personalized medicine.
Collapse
Affiliation(s)
- Débora Lanznaster
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- Correspondence:
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Biochimie et Biologie Moléculaire, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, University of Tours, Inserm, 37000 Tours, France; (C.V.-D.); (P.V.); (C.R.A.); (H.B.); (P.C.)
- CHU de Tours, Service de Neurologie, 37000 Tours, France
| |
Collapse
|
18
|
Zetterberg H, Burnham SC. Blood-based molecular biomarkers for Alzheimer's disease. Mol Brain 2019; 12:26. [PMID: 30922367 PMCID: PMC6437931 DOI: 10.1186/s13041-019-0448-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022] Open
Abstract
A major barrier to the effective conduct of clinical trials of new drug candidates against Alzheimer’s disease (AD) and to identifying patients for receiving future disease-modifying treatments is the limited capacity of the current health system to find and diagnose patients with early AD pathology. This may be related in part to the limited capacity of the current health systems to select those people likely to have AD pathology in order to confirm the diagnosis with available cerebrospinal fluid and imaging biomarkers at memory clinics. In the current narrative review, we summarize the literature on candidate blood tests for AD that could be implemented in primary care settings and used for the effective identification of individuals at increased risk of AD pathology, who could be referred for potential inclusion in clinical trials or future approved treatments following additional testing. We give an updated account of blood-based candidate biomarkers and biomarker panels for AD-related brain changes. Our analysis centres on biomarker candidates that have been replicated in more than one study and discusses the need of further studies to achieve the goal of a primary care-based screening algorithm for AD.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, he Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. .,Clinical Neurochemistry Laboratory, Sahlgrenska, University Hospital, Mölndal, Sweden. .,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK. .,UK Dementia Research Institute at UCL, London, UK.
| | - Samantha C Burnham
- CSIRO Health and Biosecurity, Parkville, Victoria, 3052, Australia. .,Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
| |
Collapse
|
19
|
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:735-749. [PMID: 31724519 PMCID: PMC7204890 DOI: 10.2174/1871527318666191114093749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha M. Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Kevin S. Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| |
Collapse
|