1
|
Mukhopadhyay S, Dutta D. Strategies to build stronger bones in Indian children: Challenges for implementation. Indian J Med Res 2024; 159:315-321. [PMID: 39361795 PMCID: PMC11414787 DOI: 10.25259/ijmr_233_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 10/05/2024] Open
Abstract
Background & objectives Globally, vitamin D deficiency has been incriminated in poor bone health and growth retardation in children, impaired adult musculoskeletal health (classically described), increased risk of cardiovascular events, immune dysfunction, neurologic disorders, insulin resistance and its multiple sequelae, polycystic ovary syndrome (PCOS) and certain cancers. This review intends to holistically highlight the burden of vitamin D deficiency among children in India, the public health importance, and potential therapeutic and preventive options, utilizing the concept of implementation research. Methods A systematic search was carried out on PubMed, Embase, China National Knowledge Infrastructure (CNKI) and Cochrane database, clinicaltrials.gov, Google Scholar, and ctri.nic.in with the keywords or MeSH terms namely 'vitamin D', 'cholecalciferol', 'ergocalciferol', 'children', connected with appropriate boolean operators. Results Vitamin D deficiency/insufficiency prevalence varies from 70-90 per cent in Indian children. Rickets, stunting, impaired bone mineral health, and dental health are common problems in these children. Serum 25-hydroxy vitamin D (25(OH)D) should be maintained >20 ng/ml in children. Oral vitamin D supplementation has a high therapeutic window (1200-10,000 IU/d well tolerated). Fortification of grains, cereal, milk, bread, fruit juice, yogurt, and cheese with vitamin D has been tried in different countries across the globe. From Indian perspective, fortification of food items which is virtually used by everyone would be ideal like fortified milk or cooking oil. Fortification of "laddus" made from "Bengal gram" with vitamin D as a part of a mid-day meal programme for children can be an option. Interpretation & conclusions There is enough evidence from India to suggest the importance and utility of food fortification with vitamin D to address the epidemic of vitamin D deficiency/insufficiency in children.
Collapse
Affiliation(s)
- Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Postgraduate Medical Education & Research, Kolkata, India
| | - Deep Dutta
- Department of Endocrinology, CEDAR Superspeciality Healthcare, Dwarka, New Delhi, India
| |
Collapse
|
2
|
Giustina A, Bilezikian JP, Adler RA, Banfi G, Bikle DD, Binkley NC, Bollerslev J, Bouillon R, Brandi ML, Casanueva FF, di Filippo L, Donini LM, Ebeling PR, Fuleihan GEH, Fassio A, Frara S, Jones G, Marcocci C, Martineau AR, Minisola S, Napoli N, Procopio M, Rizzoli R, Schafer AL, Sempos CT, Ulivieri FM, Virtanen JK. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocr Rev 2024; 45:625-654. [PMID: 38676447 PMCID: PMC11405507 DOI: 10.1210/endrev/bnae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 04/28/2024]
Abstract
The 6th International Conference, "Controversies in Vitamin D," was convened to discuss controversial topics, such as vitamin D metabolism, assessment, actions, and supplementation. Novel insights into vitamin D mechanisms of action suggest links with conditions that do not depend only on reduced solar exposure or diet intake and that can be detected with distinctive noncanonical vitamin D metabolites. Optimal 25-hydroxyvitamin D (25(OH)D) levels remain debated. Varying recommendations from different societies arise from evaluating different clinical or public health approaches. The lack of assay standardization also poses challenges in interpreting data from available studies, hindering rational data pooling and meta-analyses. Beyond the well-known skeletal features, interest in vitamin D's extraskeletal effects has led to clinical trials on cancer, cardiovascular risk, respiratory effects, autoimmune diseases, diabetes, and mortality. The initial negative results are likely due to enrollment of vitamin D-replete individuals. Subsequent post hoc analyses have suggested, nevertheless, potential benefits in reducing cancer incidence, autoimmune diseases, cardiovascular events, and diabetes. Oral administration of vitamin D is the preferred route. Parenteral administration is reserved for specific clinical situations. Cholecalciferol is favored due to safety and minimal monitoring requirements. Calcifediol may be used in certain conditions, while calcitriol should be limited to specific disorders in which the active metabolite is not readily produced in vivo. Further studies are needed to investigate vitamin D effects in relation to the different recommended 25(OH)D levels and the efficacy of the different supplementary formulations in achieving biochemical and clinical outcomes within the multifaced skeletal and extraskeletal potential effects of vitamin D.
Collapse
Affiliation(s)
- Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - John P Bilezikian
- Department of Medicine, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Robert A Adler
- Richmond Veterans Affairs Medical Center and Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Giuseppe Banfi
- IRCCS Galeazzi Sant’Ambrogio Hospital, Milano 20161, Italy
- San Raffaele Vita–Salute University, Milan 20132, Italy
| | - Daniel D Bikle
- Department of Medicine, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
- Department of Endocrinology, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
| | - Neil C Binkley
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53726, USA
| | | | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Maria Luisa Brandi
- Italian Foundation for the Research on Bone Diseases (F.I.R.M.O.), Florence 50129, Italy
| | - Felipe F Casanueva
- Department of Medicine, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario and CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Santiago de Compostela University, Santiago de Compostela 15706, Spain
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Lorenzo M Donini
- Department of Experimental Medicine, Sapienza University, Rome 00161, Italy
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton 3168, Australia
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO CC for Metabolic Bone Disorders, Division of Endocrinology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona 37129, Italy
| | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, ON K7L 3N6, Canada
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Adrian R Martineau
- Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome 00161, Italy
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes Campus Bio-Medico, University of Rome, Rome 00128, Italy
| | - Massimo Procopio
- Division of Endocrinology, Diabetology and Metabolic Diseases, “Molinette” Hospital, University of Turin, Turin 10126, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva 1205, Switzerland
| | - Anne L Schafer
- Department of Medicine, University of California and San Francisco Veterans Affairs Health Center, San Francisco, CA 94121-1545, USA
| | | | - Fabio Massimo Ulivieri
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita-Salute University and IRCCS Hospital, Milan 20132, Italy
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
3
|
Gan L, Li Y. Clinical Efficacy and Mechanism of Vitamin D2 in Treating Hashimoto's Thyroiditis. J Inflamm Res 2024; 17:1193-1210. [PMID: 38410421 PMCID: PMC10896103 DOI: 10.2147/jir.s441120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Objective Hashimoto's thyroiditis (HT) is one of the most common autoimmune diseases, with the highest incidence rate among autoimmune thyroid disorders. Vitamin D2 may have therapeutic effects on HT. This study aimed to elucidate the molecular mechanisms underlying vitamin D2 therapy for HT. Methods Differentially expressed genes (DEGs) associated with vitamin D2-treated HT were identified, and the DEG-associated gene enrichment pathway was explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The correlation between the hub genes and infiltrating immune cells was investigated, and the interactions among the hub genes and target drug and competing endogenous RNA (ceRNA; long non-coding RNA [lncRNA]-microRNA [miRNA]-messenger RNA [mRNA]) regulatory networks were determined. Results GO and KEGG enrichment analyses identified a total of 102 DEGs (6 upregulated and 96 downregulated) in the vitamin D2-treated group samples. The area under the curve values of the identified 10 hub genes was as follows: CCR1(0.920), CXCL1 (0.960), CXCL8 (0.960), EGR1 (0.960), FCGR3B (0.920), FOS (1.000), FPR1 (0.840), MMP9 (0.720), PTGS2 (0.960), and TREM1 (1.000). The immune enrichment scores of the mast cell (P = 0.008), neutrophil (P = 0.016), and plasmacytoid dendritic cell (P = 0.016) were significantly decreased in the vitamin D2-treated group (P < 0.05). The hub gene/drug regulatory network included 8 hub genes, 108 molecular drugs, and 114 interaction relationship pairs. The ceRNA regulatory network included 129 lncRNAs, 145 miRNAs, mRNAs (hub genes), and 324 interaction relationship pairs. Conclusion Vitamin D2 may play an immunomodulatory role by regulating the aforementioned immune-related molecules and immune cells, thereby improving its therapeutic effects on HT.
Collapse
Affiliation(s)
- Lu Gan
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan City, 750000, People's Republic of China
| | - Yuqi Li
- Department of Endocrinology, General Hospital of Ningxia Medical University, Yinchuan City, 750000, People's Republic of China
| |
Collapse
|