1
|
Suresh M, Radhakrishan P, Sivasamy A. Solar driven highly efficient photocatalyst based on Dy 2O 3 nanorods deposited on reduced graphene oxide nanocomposite for methylene blue dye degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60260-60278. [PMID: 39377909 DOI: 10.1007/s11356-024-35226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
In recent years, the demand for rare earth elements has surged due to their unique characteristics and diverse applications. This investigation focuses on utilizing the rare earth element dysprosium oxide (Dy2O3) for the photocatalytic oxidation of model pollutants under solar light irradiation. A novel RGO-Dy2O3 nanocomposite photocatalyst was developed using a solvothermal approach, Dy2O3 nanorods uniformly deposited onto reduced graphene oxide (RGO) nanosheets. Comprehensive characterization techniques, including Brunner-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), Raman spectroscopy, high resolution - transmittance electron microscopy (HR-TEM), field emission-electron scanning microscopy (FE-SEM), atomic force microscopy (AFM), electron paramagnetic resonance spectroscopy (EPR), photoluminescence spectroscopy (PL), and electrochemical impedance spectroscopy EIS techniques. The UV-visible diffusive reflectance spectroscopy (UV-Vis-DRS) studies revealed a band gap energy of 3.18 eV and a specific surface area of 114 m2/g for the fabricated RGO-Dy2O3 nanocomposite. The RGO-Dy2O3 nanocomposite demonstrated a high photocatalytic degradation efficiency of 98.1% at neutral pH for methylene blue (MB) dye for the dye concentration of 10 ppm. The remarkable photocatalytic performance was achieved within 60 min under solar light irradiation. Reusability tests demonstrated stability, maintaining over 90% photocatalytic efficiency after three cycles. The EPR spectra and quenching experiments confirmed that photogenerated hydroxyl radicals significantly influence the photodegradation processes. The RGO-Dy2O3 nanocomposite photocatalyst, with its green, easy preparation process and recycling capabilities, presents an ideal choice for various applications. It offers a viable alternative for the photocatalytic degradation of organic dyes in real wastewater, contributing to sustainable environmental remediation.
Collapse
Affiliation(s)
- Muninathan Suresh
- Catalysis Science Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Pravina Radhakrishan
- Catalysis Science Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Arumugam Sivasamy
- Catalysis Science Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India.
| |
Collapse
|
2
|
Akhtar MS, Fiaz S, Aslam S, Chung S, Ditta A, Irshad MA, Al-Mohaimeed AM, Iqbal R, Al-Onazi WA, Rizwan M, Nakashima Y. Green synthesis of magnetite iron oxide nanoparticles using Azadirachta indica leaf extract loaded on reduced graphene oxide and degradation of methylene blue. Sci Rep 2024; 14:18172. [PMID: 39107555 PMCID: PMC11303770 DOI: 10.1038/s41598-024-69184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
In the current arena, new-generation functional nanomaterials are the key players for smart solutions and applications including environmental decontamination of pollutants. Among the plethora of new-generation nanomaterials, graphene-based nanomaterials and nanocomposites are in the driving seat surpassing their counterparts due to their unique physicochemical characteristics and superior surface chemistry. The purpose of the present research was to synthesize and characterize magnetite iron oxide/reduced graphene oxide nanocomposites (FeNPs/rGO) via a green approach and test its application in the degradation of methylene blue. The modified Hummer's protocol was adopted to synthesize graphene oxide (GO) through a chemical exfoliation approach using a graphitic route. Leaf extract of Azadirachta indica was used as a green reducing agent to reduce GO into reduced graphene oxide (rGO). Then, using the green deposition approach and Azadirachta indica leaf extract, a nanocomposite comprising magnetite iron oxides and reduced graphene oxide i.e., FeNPs/rGO was synthesized. During the synthesis of functionalized FeNPs/rGO, Azadirachta indica leaf extract acted as a reducing, capping, and stabilizing agent. The final synthesized materials were characterized and analyzed using an array of techniques such as scanning electron microscopy (SEM)-energy dispersive X-ray microanalysis (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis, and UV-visible spectrophotometry. The UV-visible spectrum was used to evaluate the optical characteristics and band gap. Using the FT-IR spectrum, functional groupings were identified in the synthesized graphene-based nanomaterials and nanocomposites. The morphology and elemental analysis of nanomaterials and nanocomposites synthesized via the green deposition process were investigated using SEM-EDX. The GO, rGO, FeNPs, and FeNPs/rGO showed maximum absorption at 232, 265, 395, and 405 nm, respectively. FTIR spectrum showed different functional groups (OH, COOH, C=O), C-O-C) modifying material surfaces. Based on Debye Sherrer's equation, the mean calculated particle size of all synthesized materials was < 100 nm (GO = 60-80, rGO = 90-95, FeNPs = 70-90, Fe/GO = 40-60, and Fe/rGO = 80-85 nm). Graphene-based nanomaterials displayed rough surfaces with clustered and spherical shapes and EDX analysis confirmed the presence of both iron and oxygen in all the nanocomposites. The final nanocomposites produced via the synthetic process degraded approximately 74% of methylene blue. Based on the results, it is plausible to conclude that synthesized FeNPs/rGO nanocomposites can also be used as a potential photocatalyst degrader for other different dye pollutants due to their lower band gap.
Collapse
Affiliation(s)
- Muhammad Shahbaz Akhtar
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan.
| | - Sania Fiaz
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan
| | - Sohaib Aslam
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan
| | - Shinho Chung
- Department of Environmental Sciences, Forman Christian College University, Lahore, 54600, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (U), 18000, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, University of Lahore, Lahore, 54000, Pakistan
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Yoshitaka Nakashima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Mirshafiee F, Rezaei M. Enhancing hydrogen generation from sodium borohydride hydrolysis and the role of a Co/CuFe 2O 4 nanocatalyst in a continuous flow system. Sci Rep 2024; 14:9659. [PMID: 38671177 DOI: 10.1038/s41598-024-60428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, a series of cobalt-based spinel ferrites catalysts, including nickel, cobalt, zinc, and copper ferrites, were synthesized using the sol-gel auto-combustion method followed by a chemical reduction process. These catalysts were employed for accelerating hydrogen generation via the sodium borohydride hydrolysis process. A continuous stirred tank reactor was used to perform catalytic reactor tests. All samples were subjected to analysis using XRD, FESEM, EDX, FTIR, and nitrogen adsorption-desorption techniques. The results revealed that the cobalt-based copper ferrite sample, Co/Cu-Ferrite, exhibited superior particle distribution, and porosity characteristics, as it achieved a high hydrogen generation rate of 2937 mL/min.gcat. In addition, the higher electrical donating property of Cu-Ferrite which leads to the increase in the electron density of the cobalt active sites can account for its superior performance towards hydrolysis of NaBH4. Using the Arrhenius equation and the zero-order reaction calculation, activation energy for the sodium borohydride hydrolysis reaction on the Co/Cu-Ferrite catalyst was determined to be 18.12 kJ/mol. This low activation energy compared to other cobalt-based spinel ferrite catalysts confirms the catalyst's superior performance as well. Additionally, the outcomes from the recycling experiments revealed a gradual decline in the catalyst's performance after each cycle during 4 repetitive cycles. The aforementioned properties render the Co/Cu-Ferrite catalyst an efficient catalyst for hydrogen generation through NaBH4 hydrolysis.
Collapse
Affiliation(s)
- Faezeh Mirshafiee
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mehran Rezaei
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
4
|
Ramalingam G, Perumal N, Priya AK, Rajendran S. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. CHEMOSPHERE 2022; 300:134391. [PMID: 35367486 DOI: 10.1016/j.chemosphere.2022.134391] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Water is the lifeblood of all living things; we often overlook the fact that the water cycle and the life cycle are inextricably linked. However, it has become contaminated as a result of industrialization, which has impacted the ecosystem by emitting numerous dyes, organic solvents, petroleum products, heavy metals, chemicals, diseases, and solid wastes. The absence of treatment in reusing wastewater is the root of the issues. Hence it is essential to treat the water to preserve the ecosystem and also for human health. In recent years, graphene-based photocatalysts are attracted much in the waste water treatment process due to their outstanding physical, chemical, and mechanical properties. Since in the graphene-based photocatalyst, graphene has exceptional electron conductivity, a broad range of light absorption, a large surface area, and a high adsorption capacity. When it is integrated into metals, metal-containing nanocomposites, semiconductor nanocomposites, polymers, MXene, and other compounds, it can greatly boost the photocatalytic activity towards the photo destruction of contaminants. Hence in this review, water pollution, methods of waste water treatment, fundamental principles of photocatalysis, the photocatalytic activity of other materials in wastewater treatment, and how the photocatalytic efficiency against the removal of organic dyes can be enhanced when coalesced with graphene are detailed.
Collapse
Affiliation(s)
- Gomathi Ramalingam
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Nagapandiselvi Perumal
- Department of Physics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|