1
|
Synthesis and spectral studies of Ni(Ⅱ) complexes involving functionalized dithiocarbamates and triphenylphosphine: X-ray crystal structure, thermal stability, Hirshfeld surface analysis, DFT and biological evaluation. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Hussain Dar S, Ansari IA, Tabrez S, Rana M, Usman M, Ul Islam S, Rub A, Rahisuddin. Synthesis, crystal structures, biological and thermal decomposition evaluation of homo and heteroleptic Zn(Ⅱ) dithiocarbamate complexes and use of Zn(Ⅱ) dithiocarbamate to prepare zinc sulfide nanoparticles. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Saiyed TA, Adeyemi JO, Onwudiwe DC. The structural chemistry of zinc(ii) and nickel(ii) dithiocarbamate complexes. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Dithiocarbamate complexes are of immense interest due to their diverse structural properties and extensive application in various areas. They possess two sulfur atoms that often act as the binding sites for metal coordination in a monodentate, bidentate, or anisodentate fashion. These different coordination modes enhance the possibility for complex formation and make them useful in different areas especially in biomedical fields. A synergy exists in the metal ions and dithiocarbamate moieties, which tends to exert better properties than the respective individual components of the complex. These improved properties have also been attributed to the presence of the C–S bonds. Zinc and nickel ions have been majorly found to bind to the dithiocarbamate in bidentate modes, and consequently different geometries have resulted from this interaction. The aim of this review is to present some studies on the synthesis, structural chemistry, and the relevance of zinc and nickel dithiocarbamates complexes especially in biological systems.
Collapse
Affiliation(s)
- Tanzimjahan A. Saiyed
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus) , Private Bag X2046 , Mmabatho , South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus) , Private Bag X2046 , Mmabatho 2735 , South Africa
| | - Jerry O. Adeyemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus) , Private Bag X2046 , Mmabatho , South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus) , Private Bag X2046 , Mmabatho 2735 , South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus) , Private Bag X2046 , Mmabatho , South Africa
- Department of Chemistry, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus) , Private Bag X2046 , Mmabatho 2735 , South Africa
| |
Collapse
|
4
|
Maurya VK, Singh AK, Singh RP, Yadav S, Kumar K, Prakash P, Prasad LB. Synthesis and evaluation of Zn(II) dithiocarbamate complexes as potential antibacterial, antibiofilm, and antitumor agents. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1693041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vinay Kumar Maurya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashish Kumar Singh
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ravi Pratap Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shivangi Yadav
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Krishna Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pradyot Prakash
- Bacterial Biofilm and Drug Resistance Research Laboratory, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Lal Bahadur Prasad
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications. Bioinorg Chem Appl 2019; 2019:8260496. [PMID: 30881441 PMCID: PMC6381578 DOI: 10.1155/2019/8260496] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Progresses made in previous researches on syntheses of dithiocarbamates led to increase in further researches. This paper reviews concisely the challenges experienced during the synthesis of dithiocarbamate and mechanisms to overcome them in order to obtain accurate results. Aspects of its precursor's uses to synthesize adducts, nanoparticles, and nanocomposites are reported. Some common characterization techniques used for the synthesized products were assessed. Biological applications are also reported.
Collapse
|
6
|
Andrew FP, Ajibade PA. Synthesis, characterization and anticancer studies of bis(1-phenylpiperazine dithiocarbamato) Cu(II), Zn(II) and Pt(II) complexes: Crystal structures of 1-phenylpiperazine dithiocarbamato-S,S′ zinc(II) and Pt(II). J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Exploring the Topological Landscape Exhibited by Binary Zinc-triad 1,1-dithiolates. CRYSTALS 2018. [DOI: 10.3390/cryst8070292] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The crystal chemistry of the zinc-triad binary 1,1-dithiolates, that is, compounds of xanthate [−S2COR], dithiophosphate [−S2P(OR)2], and dithiocarbamate [−S2CNR2] ligands, is reviewed. Owing to a wide range of coordination modes that can be adopted by 1,1-dithiolate anions, such as monodentate, chelating, μ2-bridging, μ3-bridging, etc., there exists a rich diversity in supramolecular assemblies for these compounds, including examples of zero-, one-, and two-dimensional architectures. While there are similarities in structural motifs across the series of 1,1-dithiolate ligands, specific architectures are sometimes found, depending on the metal centre and/or on the 1,1-dithiolate ligand. Further, an influence of steric bulk upon supramolecular aggregation is apparent. Thus, bulky R groups generally preclude the close approach of molecules in order to reduce steric hindrance and therefore, lead to lower dimensional aggregation patterns. The ligating ability of the 1,1-dithiolate ligands also proves crucial in determining the extent of supramolecular aggregation, in particular for dithiocarbamate species where the relatively greater chelating ability of this ligand reduces the Lewis acidity of the zinc-triad element, which thereby reduces its ability to significantly expand its coordination number. Often, the functionalisation of the organic substituents in the 1,1-dithiolate ligands, for example, by incorporating pyridyl groups, can lead to different supramolecular association patterns. Herein, the diverse assemblies of supramolecular architectures are classified and compared. In all, 27 structurally distinct motifs have been identified.
Collapse
|
8
|
Structural variations in zinc(II) complexes with N,N-di(4-fluorobenzyl)dithiocarbamate and imines: New precursor for zinc sulfide nanoparticles. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Ivanov AV, Loseva OV, Rodina TA, Smolentsev AI. Multiple isomerization of structural units in ion-polymeric heteronuclear gold(III)–zinc(II) complex ([Au{S2CN(C4H9)2}2]2[ZnCl4])n: Chemisorption-based synthesis, supramolecular structure (self-organization of long-period cation–cationic polymer chains), and thermal behavior. RUSS J COORD CHEM+ 2017. [DOI: 10.1134/s1070328417080036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Sathiyaraj E, Tamilvanan S, Thirumaran S, Ciattini S. Effect of functionalization of N-bound organic moiety in zinc(II) dithiocarbamate complexes on structure, biological properties and morphology of zinc sulfide nanoparticles. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Onwudiwe DC, Ekennia AC, Mogwase BM, Olubiyi OO, Hosten E. Palladium(II) and platinum(II) complexes of N-butyl-N-phenyldithiocarbamate: Synthesis, characterization, biological activities and molecular docking studies. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|