1
|
Ediriweera GR, Butcher NJ, Kothapalli A, Zhao J, Blanchfield JT, Subasic CN, Grace JL, Fu C, Tan X, Quinn JF, Ascher DB, Whittaker MR, Whittaker AK, Kaminskas LM. Lipid sulfoxide polymers as potential inhalable drug delivery platforms with differential albumin binding affinity. Biomater Sci 2024; 12:2978-2992. [PMID: 38683548 DOI: 10.1039/d3bm02020g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Inhalable nanomedicines are increasingly being developed to optimise the pharmaceutical treatment of respiratory diseases. Large lipid-based nanosystems at the forefront of the inhalable nanomedicines development pipeline, though, have a number of limitations. The objective of this study was, therefore, to investigate the utility of novel small lipidated sulfoxide polymers based on poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) as inhalable drug delivery platforms with tuneable membrane permeability imparted by differential albumin binding kinetics. Linear PMSEA (5 kDa) was used as a hydrophilic polymer backbone with excellent anti-fouling and stealth properties compared to poly(ethylene glycol). Terminal lipids comprising single (1C2, 1C12) or double (2C12) chain diglycerides were installed to provide differing affinities for albumin and, by extension, albumin trafficking pathways in the lungs. Albumin binding kinetics, cytotoxicity, lung mucus penetration and cellular uptake and permeability through key cellular barriers in the lungs were examined in vitro. The polymers showed good mucus penetration and no cytotoxicity over 24 h at up to 1 mg ml-1. While 1C2-showed no interaction with albumin, 1C12-PMSEA and 2C12-PMSEA bound albumin with KD values of approximately 76 and 10 μM, respectively. Despite binding to albumin, 2C12-PMSEA showed reduced cell uptake and membrane permeability compared to the smaller polymers and the presence of albumin had little effect on cell uptake and membrane permeability. While PMSEA strongly shielded these lipids from albumin, the data suggest that there is scope to tune the lipid component of these systems to control membrane permeability and cellular interactions in the lungs to tailor drug disposition in the lungs.
Collapse
Affiliation(s)
- Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Neville J Butcher
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Ashok Kothapalli
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jiacheng Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher N Subasic
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - James L Grace
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - John F Quinn
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael R Whittaker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Kaminskas LM, Butcher NJ, Subasic CN, Kothapalli A, Haque S, Grace JL, Morsdorf A, Blanchfield JT, Whittaker AK, Quinn JF, Whittaker MR. Lipidated brush-PEG polymers as low molecular weight pulmonary drug delivery platforms. Expert Opin Drug Deliv 2024; 21:151-167. [PMID: 38248870 DOI: 10.1080/17425247.2024.2305116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVES Nanomedicines are being actively developed as inhalable drug delivery systems. However, there is a distinct utility in developing smaller polymeric systems that can bind albumin in the lungs. We therefore examined the pulmonary pharmacokinetic behavior of a series of lipidated brush-PEG (5 kDa) polymers conjugated to 1C2, 1C12 lipid or 2C12 lipids. METHODS The pulmonary pharmacokinetics, patterns of lung clearance and safety of polymers were examined in rats. Permeability through monolayers of primary human alveolar epithelia, small airway epithelia and lung microvascular endothelium were also investigated, along with lung mucus penetration and cell uptake. RESULTS Polymers showed similar pulmonary pharmacokinetic behavior and patterns of lung clearance, irrespective of lipid molecular weight and albumin binding capacity, with up to 30% of the dose absorbed from the lungs over 24 h. 1C12-PEG showed the greatest safety in the lungs. Based on its larger size, 2C12-PEG also showed the lowest mucus and cell membrane permeability of the three polymers. While albumin had no significant effect on membrane transport, the cell uptake of C12-conjugated PEGs were increased in alveolar epithelial cells. CONCLUSION Lipidated brush-PEG polymers composed of 1C12 lipid may provide a useful and novel alternative to large nanomaterials as inhalable drug delivery systems.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | | | - Ashok Kothapalli
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Shadabul Haque
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - James L Grace
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Alexander Morsdorf
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Joanne T Blanchfield
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, University of Queensland, St Lucia, QLD, Australia
| | - John F Quinn
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|