1
|
Cazzola M, Ora J, Maniscalco M, Rogliani P. A clinician's guide to single vs multiple inhaler therapy for COPD. Expert Rev Respir Med 2024; 18:457-468. [PMID: 39044348 DOI: 10.1080/17476348.2024.2384702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION In the management of chronic obstructive pulmonary disease (COPD), inhalation therapy plays a pivotal role. However, clinicians often face the dilemma of choosing between single and multiple inhaler therapies for their patients. This choice is critical because it can affect treatment efficacy, patient adherence, and overall disease management. AREAS COVERED This article examines the advantages and factors to be taken into consideration when selecting between single and multiple inhaler therapies for COPD. EXPERT OPINION Both single and multiple inhaler therapies must be considered in COPD management. While single inhaler therapy offers simplicity and convenience, multiple inhaler therapy provides greater flexibility and customization. Clinicians must carefully evaluate individual patient needs and preferences to determine the most appropriate inhaler therapy regimen. Through personalized treatment approaches and shared decision-making, clinicians can optimize COPD management and improve patient well-being. Nevertheless, further research is required to compare the effectiveness of single versus multiple inhaler strategies through rigorous clinical trials, free from industry bias, to determine the optimal inhaler strategy. Smart inhaler technology appears to have the potential to enhance adherence and personalized management, but the relative merits of smart inhalers in single inhaler regimens versus multiple inhaler regimens remain to be determined.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital "Fondazione Policlinico Tor Vergata", Rome, Italy
| | - Mauro Maniscalco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, Telese Terme, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Respiratory Medicine, University Hospital "Fondazione Policlinico Tor Vergata", Rome, Italy
| |
Collapse
|
2
|
Matera MG, Rinaldi B, Ambrosio C, Cazzola M. Is it preferable to administer a bronchodilator once- or twice-daily when treating COPD? Respir Med 2023; 219:107439. [PMID: 37879449 DOI: 10.1016/j.rmed.2023.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Nocturnal and early morning symptoms are common and uncomfortable in many patients with COPD, and are likely to affect their long-term outcomes. However, it is still debated whether it is better to give long-acting bronchodilators once- or twice-daily to symptomatic COPD patients. The functional link between circadian rhythms of autonomic tone and airway calibre explains why the timing of administration of bronchodilators in chronic airway diseases can induce different effects when taken at different biological (circadian) times. However, the timing also depends on the pharmacological characteristics of the bronchodilator to be used. Because the profile of bronchodilation produced by once-daily vs. twice-daily long-acting bronchodilators differs throughout 24 h, selecting long-acting bronchodilators may be customized to specific patient preferences based on the need for further bronchodilation in the evening. This is especially helpful for people who experience respiratory symptoms at night or early morning. Compared to placebo, evening bronchodilator administration is consistently linked with persistent overnight improvements in dynamic respiratory mechanics and inspiratory neural drive. The current evidence indicates that nocturnal and early morning symptoms control is best handled by a LAMA taken in the evening. In contrast, it seems preferable to use a LABA for daytime symptoms. Therefore, it can be speculated that combining a LAMA with a LABA can improve bronchodilation and control symptoms better. Both LAMA and LABA must be rapid in their onset of action. Aclidinium/formoterol, a twice-daily combination, is the most studies of the available LAMA/LABA combinations in terms of impact on daytime and nocturnal symptoms.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Concetta Ambrosio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| |
Collapse
|
3
|
Matera MG, Hanania NA, Maniscalco M, Cazzola M. Pharmacotherapies in Older Adults with COPD: Challenges and Opportunities. Drugs Aging 2023:10.1007/s40266-023-01038-0. [PMID: 37316689 DOI: 10.1007/s40266-023-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Older adults have a higher prevalence of chronic obstructive pulmonary disease (COPD), which will likely increase substantially in the coming decades owing to aging populations and increased long-term exposure to risk factors for this disease. COPD in older adults is characterized by low-grade chronic systemic inflammation, known as inflamm-aging. It contributes substantially to age-associated pulmonary changes that are clinically expressed by reduced lung function, poor health status, and limitations in activities of daily living. In addition, inflamm-aging has been associated with the onset of many comorbidities commonly encountered in COPD. Furthermore, physiologic changes that are often seen with aging can influence the optimal treatment of older patients with COPD. Therefore, variables such as pharmacokinetics, pharmacodynamics, polypharmacy, comorbidities, adverse drug responses, drug interactions, method of administration, and social and economic issues that impact nutrition and adherence to therapy must be carefully evaluated when prescribing medication to these patients because each of them alone or together may affect the outcome of treatment. Current COPD medications focus mainly on alleviating COPD-related symptoms, so alternative treatment approaches that target the disease progression are being investigated. Considering the importance of inflamm-aging, new anti-inflammatory molecules are being evaluated, focusing on inhibiting the recruitment and activation of inflammatory cells, blocking mediators of inflammation thought to be important in the recruitment or activation of these inflammatory cells or released by these cells. Potential therapies that may slow the aging processes by acting on cellular senescence, blocking the processes that cause it (senostatics), eliminating senescent cells (senolytics), or targeting the ongoing oxidative stress seen with aging need to be evaluated.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
4
|
Matera MG, Rinaldi B, Belardo C, Calzetta L, Cazzola M. Pharmacokinetic considerations surrounding triple therapy for uncontrolled asthma. Expert Opin Drug Metab Toxicol 2023; 19:345-355. [PMID: 37376964 DOI: 10.1080/17425255.2023.2230130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/12/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Solid pharmacological rationale and clinical evidence support the use of a combination of an inhaled corticosteroid (ICS), a long-acting β2-agonist, and a long-acting muscarinic antagonist in severe asthma, which clinically results in increased lung function, improved symptoms, and decreased exacerbation rates. AREAS COVERED We examined the pharmacokinetic issues associated with triple therapy for uncontrolled asthma. We considered the pharmacokinetic characteristics of the three drug classes, the role of inhalers in influencing their pharmacokinetic behavior, and the impact of severe asthma on the pharmacokinetics of inhaled drugs. EXPERT OPINION The pharmacokinetics of ICSs and bronchodilators are not affected to a great extent by severe asthma, according to a detailed review of the currently accessible literature. Compared to healthy people, patients with severe asthma show only minor variations in a few pharmacokinetic characteristics, which are unlikely to have therapeutic significance and do not require particular attention. However, the difficulty of obtaining pharmacokinetic profiles of the three drugs included in a triple therapy suggests that the clinical response should be followed over time, which can be considered a good surrogate indicator of whether the drugs have reached sufficient concentrations in the lung to exert a valid pharmacological action.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Carmela Belardo
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
5
|
|
6
|
Matera MG, Calzetta L, Ora J, Rogliani P, Cazzola M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv 2021; 18:891-906. [PMID: 33412922 DOI: 10.1080/17425247.2021.1873271] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Inhaled drugs are important in the treatment of many lung pathologies, but to be therapeutically effective they must reach unbound concentrations at their effect site in the lung that are adequate to interact with their pharmacodynamic properties (PD) and exert the pharmacological action over an appropriate dosing interval. Therefore, the evaluation of pharmacokinetic (PK)/PD relationship is critical to predict their possible therapeutic effect.Areas covered: We review the approaches used to assess the PK/PD relationship of the major classes of inhaled drugs that are prescribed to treat pulmonary pathologies.Expert opinion: There are still great difficulties in producing data on lung concentrations of inhaled drugs and interpreting them as to their ability to induce the desired therapeutic action. The structural complexity of the lungs, the multiplicity of processes involved simultaneously and the physical interactions between the lungs and drug make any PK/PD approach to drug delivery design for inhalation medications extremely challenging. New approaches/methods are increasing our understanding about what happens to inhaled drugs, but they are still not ready for regulatory purposes. Therefore, we must still rely on plasma concentrations based on the axiom that they reflect both the extent and the pattern of deposition within the lungs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Dept. Medicine and Surgery, University of Parma, Parma, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
7
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
8
|
Matera MG, Rinaldi B, Berardo C, Rinaldi M, Cazzola M. A review of the pharmacokinetics of M 3 muscarinic receptor antagonists used for the treatment of asthma. Expert Opin Drug Metab Toxicol 2020; 16:143-148. [PMID: 31958237 DOI: 10.1080/17425255.2020.1716730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: There is solid evidence that in patients with poorly controlled severe asthma despite the use of ICS and LABA, the addition of LAMAs, such as tiotropium, significantly increases the time to the first severe exacerbation and provides a modest but sustained bronchodilation. However, only a very limited number of pharmacokinetic studies with these agents have been performed in asthmatic patients.Areas covered: The pharmacokinetic profile of inhaled tiotropium, umeclidinium and glycopyrronium in healthy volunteers and that of inhaled tiotropium and umeclidinium in asthmatic patients have been reviewed.Expert opinion: In asthmatic patients, LAMAs are rapidly absorbed into the systemic compartment and demonstrate bi-exponential elimination (rapidly declining plasma concentrations followed by slow apparent terminal elimination). Apparently, the severity of asthma does not change the pharmacokinetics of LAMAs. The limited information available is focused on the plasma pharmacokinetic profile of these drugs and, consequently, although suitable for establishing a systemic safety profile, it does not tell us much about possible therapeutic efficacy of LAMAs in asthmatics because quantification of systemic plasma values is neither at the airways, which are their site of action nor representative of their transport to this site.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmela Berardo
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Rinaldi
- Multidisciplnary Department of Medical-Surgical and Dental Specialities, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
9
|
Cazzola M, Rogliani P, Calzetta L, Matera MG. Bronchodilators in subjects with asthma-related comorbidities. Respir Med 2019; 151:43-48. [PMID: 31047116 DOI: 10.1016/j.rmed.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Asthma is often associated with different comorbidities such as cardiovascular diseases, depression, diabetes mellitus, dyslipidaemia, osteoporosis, rhinosinusitis and mainly gastro-oesophageal reflux disease and allergic rhinitis. Although bronchodilators play an important role in the treatment of asthma, there is no overall description of their impact on comorbid asthma, regardless of whether favourable or negative. This narrative review examines the potential effects of bronchodilators on comorbidities of asthma.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|