1
|
Faris A, Ibrahim IM, Hadni H, Elhallaoui M. High-throughput virtual screening of phenylpyrimidine derivatives as selective JAK3 antagonists using computational methods. J Biomol Struct Dyn 2024; 42:7574-7599. [PMID: 37539779 DOI: 10.1080/07391102.2023.2240413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
In this study, we used phenylpyrimidine derivatives with known biological activity against JAK3, a critical tyrosine kinase enzyme involved in signaling pathways, to find similar compounds as potential treatments for rheumatoid arthritis. These inhibitors inhibited JAK3 activity by forming a covalent bond with the Cys909 residue, which resulted in a strong inhibitory effect. Phenylpyrimidine is considered a promising therapeutic target. For pharmacophore modeling, 39 phenylpyrimidine derivatives with high pIC50 (Exp) values were chosen. The best pharmacophore model produced 28 molecules, and the five-point common pharmacophore hypothesis from P HASE (DHRRR_1) revealed the requirement for a hydrogen bond donor feature, a hydrophobic group feature, and three aromatic ring features for further design. The validation of the pharmacophore model phase was performed through 3D-QSAR using partial least squares (P LS). The 3D-QSAR study produced two successful models, an atom-based model (R2 = 0.95; Q2 = 0.67) and a field-based model (R2 = 0.93; Q2 = 0.76), which were used to predict the biological activity of new compounds. The pharmacophore model successfully distinguished between active and inactive medications, discovered potential JAK3 inhibitors, and demonstrated validity with a ROC of 0. 77. ADME-Tox was used to eliminate compounds that might have adverse effects. The best pharmacokinetics and affinity derivatives were selected for covalent docking. A molecular dynamics simulation of the selected molecules and the protein complex was performed to confirm the stability of the interaction with JAK3, whereas MM/GBSA simulations further confirmed their binding affinity. By using the principle of retrosynthesis, we were able to map out a pathway for synthesizing these potential drug candidates. This study has the potential to offer valuable and practical insights for optimizing novel derivatives of phenylpyrimidine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hanine Hadni
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
2
|
Chandrashekara S. Pharmacokinetic review of janus kinase inhibitors and its clinical implications for the management of rheumatoid arthritis. Expert Opin Drug Metab Toxicol 2024:1-8. [PMID: 38916236 DOI: 10.1080/17425255.2024.2373092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION In the realm of autoimmune rheumatic diseases, understanding JAK inhibitors (JAKi) nuances is vital. Baricitinib, tofacitinib, upaacitinib, filgotinib, and peficitinib exhibit subtle yet impactful pharmacokinetic (PK) and pharmacodynamic (PD) variations. AREAS COVERED This narrative review critically assesses PK and PD distinctions among globally approved JAKi for rheumatoid arthritis, which primarily guide clinical decisions in autoimmune diseases, particularly rheumatoid arthritis. It explores the intricate JAK-STAT signaling pathway, offering insights into JAKs' roles in inflammation, hematopoiesis, and immune homeostasis. Emphasis on PK parameters, including absorption, distribution, metabolism, and excretion, along with CYP3A4 drug interactions, is highlighted. The review underscores integrating PK and PD properties, considering patient-specific factors like hepatic and renal clearance, for judicious JAKi selection in RA and related autoimmune conditions. The literature has been collected from all available databases based on the review question. EXPERT OPINION Integrating PK and PD properties with patient-specific factors is pivotal for judicious JAKi selection. Recognizing disparities in PK and PD across diseases, ethnicities, and environmental factors is crucial for personalized JAKi choices. This expert opinion underscores the significance of a second compartment analysis, elucidating the interplay between PK and PD and its impact on JAKi efficacy.
Collapse
Affiliation(s)
- S Chandrashekara
- Department of Clinical Immunology and Rheumatology, ChanRe Rheumatology and Immunology Center and Research, Bengaluru, India
| |
Collapse
|
3
|
Jang KK, Ercelen D, Cen Feng JYC, Gurunathan S, Zhou C, Korman A, Newell L, Hudesman D, Jones DR, Loke P, Axelrad JE, Cadwell K. Tofacitinib uptake by patient-derived intestinal organoids predicts individual clinical responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583137. [PMID: 38712048 PMCID: PMC11071318 DOI: 10.1101/2024.03.02.583137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background & Aims Despite increasing therapeutic options in the treatment of ulcerative colitis (UC), achieving disease remission remains a major clinical challenge. Nonresponse to therapy is common and clinicians have little guidance in selecting the optimal therapy for an individual patient. This study examined whether patient-derived materials could predict individual clinical responsiveness to the Janus kinase (JAK) inhibitor, tofacitinib, prior to treatment initiation. Method In 48 patients with UC initiating tofacitinib, we longitudinally collected clinical covariates, stool, and colonic biopsies to analyze the microbiota, transcriptome, and exome variations associated with clinical responsiveness at week 24. We established patient-derived organoids (n = 23) to determine how their viability upon stimulation with proinflammatory cytokines in the presence of tofacitinib related to drug responsiveness in patients. We performed additional biochemical analyses of organoids and primary tissues to identify the mechanism underlying differential tofacitinib sensitivity. Results The composition of the gut microbiota, rectal transcriptome, inflammatory biomarkers, and exome variations were indistinguishable among UC patients prior to tofacitinib treatment. However, a subset of patient-derived organoids displayed reduced sensitivity to tofacitinib as determined by the ability of the drug to inhibit STAT1 phosphorylation and loss of viability upon cytokine stimulation. Remarkably, sensitivity of organoids to tofacitinib predicted individual clinical patient responsiveness. Reduced responsiveness to tofacitinib was associated with decreased levels of the cationic transporter MATE1, which mediates tofacitinib uptake. Conclusions Patient-derived intestinal organoids predict and identify mechanisms of individual tofacitinib responsiveness in UC. Specifically, MATE1 expression predicted clinical response to tofacitinib.
Collapse
|
4
|
Kim RW, Lam M, Abuabara K, Simpson EL, Drucker AM. Targeted Systemic Therapies for Adults with Atopic Dermatitis: Selecting from Biologics and JAK Inhibitors. Am J Clin Dermatol 2024; 25:179-193. [PMID: 38216802 DOI: 10.1007/s40257-023-00837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/14/2024]
Abstract
Therapeutic options for people with moderate or severe atopic dermatitis refractory to topical therapy have rapidly expanded in recent years. These new targeted immunomodulatory agents-biologics and Janus kinase (JAK) inhibitors-have each demonstrated high levels of efficacy and acceptable safety in mostly placebo-controlled clinical trials for atopic dermatitis, but there is no universally applicable algorithm to help choose between them for a given patient. Hence, patients and physicians should utilize shared decision making, discussing efficacy, safety, mode of delivery, monitoring, costs, speed of onset, and other factors to reach individualized treatment decisions. In this review, we try to aid shared decision making by summarizing the efficacy, safety, and monitoring of biologics and oral JAK inhibitors for adults with atopic dermatitis. Network meta-analyses suggest that higher doses of abrocitinib and upadacitinib are more effective than biologics. They also show that, among biologics, dupilumab is likely more effective than tralokinumab and lebrikizumab. Biologics are generally considered safer than JAK inhibitors, although concerns about JAK inhibitors are mainly extrapolated from older generation JAK inhibitors used in higher-risk populations. We also outline evidence and considerations for choosing and using systemic immunomodulatory treatments for special populations including pregnant individuals, those with human immunodeficiency virus (HIV), hepatitis B and C, end stage kidney disease, and older adults.
Collapse
Affiliation(s)
- Richard W Kim
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Megan Lam
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Division of Epidemiology and Biostatistics, University of California, Berkeley School of Public Health, Berkeley, CA, USA
| | - Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Aaron M Drucker
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Medicine and Women's College Research Institute, Women's College Hospital, 76 Grenville Street, Toronto, ON, M5S 1B2, Canada.
| |
Collapse
|
5
|
Virtanen A, Palmroth M, Liukkonen S, Kurttila A, Haikarainen T, Isomäki P, Silvennoinen O. Differences in JAK Isoform Selectivity Among Different Types of JAK Inhibitors Evaluated for Rheumatic Diseases Through In Vitro Profiling. Arthritis Rheumatol 2023; 75:2054-2061. [PMID: 37134144 DOI: 10.1002/art.42547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVE The selectivity of JAK inhibitors (Jakinibs) forms the basis for understanding their clinical characteristics; however, evaluation of selectivity is hampered by the lack of comprehensive head-to-head studies. Our objective was to profile in parallel Jakinibs indicated or evaluated for rheumatic diseases for their JAK and cytokine selectivity in vitro. METHODS We analyzed 10 Jakinibs for JAK isoform selectivity by assaying their inhibition of JAK kinase activity, binding to kinase and pseudokinase domains, and inhibition of cytokine signaling using blood samples from healthy volunteers and using isolated peripheral blood mononuclear cells (PBMCs) from patients with rheumatoid arthritis and from healthy donors. RESULTS Pan-Jakinibs effectively suppressed kinase activity of 2 to 3 JAK family members, whereas isoform-targeted Jakinibs possessed varying degrees of selectivity for 1 or 2 JAK family members. In human leukocytes, Jakinibs predominantly inhibited the JAK1-dependent cytokines interleukin-2 (IL-2), IL-6, and interferons (IFNs). In PBMCs from patients with rheumatoid arthritis compared with healthy controls, inhibition of these cytokines was more pronounced, and some cell-type and STAT isoform differences were observed. Novel Jakinibs demonstrated high selectivity: the covalent Jakinib ritlecitinib showed 900- to 2,500-fold selectivity for JAK3 over other JAKs and specific suppression of IL-2-signaling, whereas the allosteric TYK2 inhibitor deucravacitinib inhibited IFNα signaling with high specificity. Interestingly, deucravacitinib targeted the regulatory pseudokinase domain and did not affect JAK in vitro kinase activity. CONCLUSION Inhibition of JAK kinase activity did not directly translate into cellular inhibition of JAK/STAT signaling. Despite differences in JAK selectivity, the cytokine inhibition profiles of currently approved Jakinibs were highly similar, with preference for JAK1-mediated cytokines. Novel types of Jakinibs showed narrow cytokine inhibition profile specific for JAK3- or TYK2-mediated signaling.
Collapse
Affiliation(s)
- Anniina Virtanen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maaria Palmroth
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Sanna Liukkonen
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Antti Kurttila
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Pia Isomäki
- Faculty of Medicine and Health Technology, Tampere University, and Centre for Rheumatic Diseases, Tampere University Hospital, Tampere, Finland
| | - Olli Silvennoinen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, and Faculty of Medicine and Health Technology, Tampere University, Tempere, and Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
6
|
Melki I, Frémond ML. JAK Inhibition in Juvenile Idiopathic Arthritis (JIA): Better Understanding of a Promising Therapy for Refractory Cases. J Clin Med 2023; 12:4695. [PMID: 37510809 PMCID: PMC10381267 DOI: 10.3390/jcm12144695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases with probably differential underlying physiopathology. Despite the revolutionary era of biologics, some patients remain difficult to treat because of disease severity, drug adverse events, drug allergy or association with severe comorbidities, i.e., uveitis, interstitial lung disease and macrophagic activation syndrome. Janus Kinase (JAK) inhibitors are small molecules that target JAK/Signal Transducers and Activators of Transcription (STAT) pathways, which could then prevent the activity of several proinflammatory cytokines. They may provide a useful alternative in these cases of JIA or in patients actually affected by Mendelian disorders mimicking JIA, such as type I interferonopathies with joint involvement, and might be the bridge for haematopoietic stem cell transplantation in these disabling conditions. As these treatments may have side effects that should not be ignored, ongoing and further controlled studies are still needed to provide data underlying long-term safety considerations in children and delineate subsets of JIA patients that will benefit from these promising treatments.
Collapse
Affiliation(s)
- Isabelle Melki
- General Paediatrics, Department of Infectious Disease and Internal Medicine, Robert Debré University Hospital, APHP, Nord-Université Paris Cité, F-75020 Paris, France
- Paediatrics, Rheumatology and Paediatric Internal Medicine, Children's Hospital, F-33000 Bordeaux, France
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Université Paris Cité, Inserm UMR 1163, F-75015 Paris, France
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Université Paris Cité, Inserm UMR 1163, F-75015 Paris, France
- Paediatric Haematology-Immunology and Rheumatology Unit, Necker Hospital, APHP, Centre-Université Paris Cité, F-75015 Paris, France
| |
Collapse
|
7
|
Lescoat A, Roofeh D, Kuwana M, Lafyatis R, Allanore Y, Khanna D. Therapeutic Approaches to Systemic Sclerosis: Recent Approvals and Future Candidate Therapies. Clin Rev Allergy Immunol 2023; 64:239-261. [PMID: 34468946 PMCID: PMC9034469 DOI: 10.1007/s12016-021-08891-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Systemic sclerosis is the rheumatic disease with the highest individual mortality. The severity of the disease is determined by the extent of fibrotic changes to cutaneous and internal organ tissues, the most life-threatening visceral manifestations being interstitial lung disease, SSc-associated-pulmonary arterial hypertension and myocardial involvement. The heterogeneity of the disease has initially hindered the design of successful clinical trials, but considerations on classification criteria have improved patient selection in trials, allowing the identification of more homogeneous groups of patients based on progressive visceral manifestations or the extent of skin involvement with a focus of patients with early disease. Two major subsets of systemic sclerosis are classically described: limited cutaneous systemic sclerosis characterized by distal skin fibrosis and the diffuse subset with distal and proximal skin thickening. Beyond this dichotomic subgrouping of systemic sclerosis, new phenotypic considerations based on antibody subtypes have provided a better understanding of the heterogeneity of the disease, anti-Scl70 antibodies being associated with progressive interstitial lung disease regardless of cutaneous involvement. Two targeted therapies, tocilizumab (a monoclonal antibody targeting interleukin-6 receptors (IL-6R)) and nintedanib (a tyrosine kinase inhibitor), have recently been approved by the American Food & Drug Administration to limit the decline of lung function in patients with SSc-associated interstitial lung disease, demonstrating that such better understanding of the disease pathogenesis with the identification of key targets can lead to therapeutic advances in the management of some visceral manifestations of the disease. This review will provide a brief overview of the pathogenesis of SSc and will present a selection of therapies recently approved or evaluated in this context. Therapies evaluated and approved in SSc-ILD will be emphasized and a review of recent phase II trials in diffuse cutaneous systemic sclerosis will be proposed. We will also discuss selected therapeutic pathways currently under investigation in systemic sclerosis that still lack clinical data in this context but that may show promising results in the future based on preclinical data.
Collapse
Affiliation(s)
- Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - David Roofeh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
- Université de Paris, Université Paris Descartes, Paris, France
- Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Michigan Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Appeldoorn TYJ, Munnink THO, Morsink LM, Hooge MNLD, Touw DJ. Pharmacokinetics and Pharmacodynamics of Ruxolitinib: A Review. Clin Pharmacokinet 2023; 62:559-571. [PMID: 37000342 PMCID: PMC10064968 DOI: 10.1007/s40262-023-01225-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Ruxolitinib is a tyrosine kinase inhibitor targeting the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathways. Ruxolitinib is used to treat myelofibrosis, polycythemia vera and steroid-refractory graft-versus-host disease in the setting of allogeneic stem-cell transplantation. This review describes the pharmacokinetics and pharmacodynamics of ruxolitinib. METHODS Pubmed, EMBASE, Cochrane Library and web of Science were searched from the time of database inception to march 15, 2021 and was repeated on November 16, 2021. Articles not written in English, animal or in vitro studies, letters to the editor, case reports, where ruxolitinib was not used for hematological diseases or not available as full text were excluded. RESULTS Ruxolitinib is well absorbed, has 95% bio-availability, and is bound to albumin for 97%. Ruxolitinib pharmacokinetics can be described with a two-compartment model and linear elimination. Volume of distribution differs between men and women, likely related to bodyweight differences. Metabolism is mainly hepatic via CYP3A4 and can be altered by CYP3A4 inducers and inhibitors. The major metabolites of ruxolitinib are pharmacologically active. The main route of elimination of ruxolitinib metabolites is renal. Liver and renal dysfunction affect some of the pharmacokinetic variables and require dose reductions. Model-informed precision dosing might be a way to further optimize and individualize ruxolitinib treatment, but is not yet advised for routine care due to lack of information on target concentrations. CONCLUSION Further research is needed to explain the interindividual variability of the ruxolitinib pharmacokinetic variables and to optimize individual treatment.
Collapse
Affiliation(s)
- T Y J Appeldoorn
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - T H Oude Munnink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - L M Morsink
- Department of Hematology, University Medical Centre Groningen, Groningen, The Netherlands
| | - M N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - D J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
The Role of Organic Cation Transporters in the Pharmacokinetics, Pharmacodynamics and Drug-Drug Interactions of Tyrosine Kinase Inhibitors. Int J Mol Sci 2023; 24:ijms24032101. [PMID: 36768423 PMCID: PMC9917293 DOI: 10.3390/ijms24032101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) decisively contributed in revolutionizing the therapeutic approach to cancer, offering non-invasive, tolerable therapies for a better quality of life. Nonetheless, degree and duration of the response to TKI therapy vary depending on cancer molecular features, the ability of developing resistance to the drug, on pharmacokinetic alterations caused by germline variants and unwanted drug-drug interactions at the level of membrane transporters and metabolizing enzymes. A great deal of approved TKIs are inhibitors of the organic cation transporters (OCTs). A handful are also substrates of them. These transporters are polyspecific and highly expressed in normal epithelia, particularly the intestine, liver and kidney, and are, hence, arguably relevant sites of TKI interactions with other OCT substrates. Moreover, OCTs are often repressed in cancer cells and might contribute to the resistance of cancer cells to TKIs. This article reviews the OCT interactions with approved and in-development TKIs reported in vitro and in vivo and critically discusses the potential clinical ramifications thereof.
Collapse
|
10
|
Malnoë D, Fardel O, Le Corre P. Involvement of Transporters in Intestinal Drug-Drug Interactions of Oral Targeted Anticancer Drugs Assessed by Changes in Drug Absorption Time. Pharmaceutics 2022; 14:pharmaceutics14112493. [PMID: 36432682 PMCID: PMC9696196 DOI: 10.3390/pharmaceutics14112493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: Oral targeted anticancer drugs are victims of presystemic pharmacokinetic drug−drug interactions (DDI). Identification of the nature of these DDIs, i.e., enzyme-based or/and transporter-based, is challenging, since most of these drugs are substrates of intestinal and/or hepatic cytochrome P-450 enzymes and of intestinal membrane transporters. (2) Methods: Variations in mean absorption time (MAT) between DDIs and control period (MAT ratios < 0.77 or >1.30) have been proposed to implicate transporters in DDIs at the intestinal level. This methodology has been applied to a large set of oral targeted anticancer drugs (n = 54, involved in 77 DDI studies), from DDI studies available either in the international literature and/or in publicly accessible FDA files. (3) Results: Significant variations in MAT were evidenced in 33 DDI studies, 12 of which could be explained by modulation of an efflux transporter. In 21 DDI studies, modulation of efflux transporters could not explain the MAT variation, suggesting a possible relevant role of influx transporters in the intestinal absorption. (4) Conclusions: This methodology allows one to suggest the involvement of intestinal transporters in DDIs, and should be used in conjunction with in vitro methodologies to help understanding the origin of DDIs.
Collapse
Affiliation(s)
- David Malnoë
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
- Correspondence:
| |
Collapse
|
11
|
Eichner A, Wohlrab J. Pharmacology of inhibitors of Janus kinases – Part 1: Pharmacokinetics. J Dtsch Dermatol Ges 2022; 20:1485-1499. [DOI: 10.1111/ddg.14921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Adina Eichner
- An‐Institute of Applied Dermatopharmacy Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - Johannes Wohlrab
- An‐Institute of Applied Dermatopharmacy Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
- Department of Dermatology and Venereology Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| |
Collapse
|
12
|
Eichner A, Wohlrab J. Pharmakologie der Januskinase‐Inhibitoren – Teil 1: Pharmakokinetik. J Dtsch Dermatol Ges 2022; 20:1485-1500. [DOI: 10.1111/ddg.14921_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Adina Eichner
- An‐Institut für angewandte Dermatopharmazie Martin‐Luther‐Universität Halle‐Wittenberg Halle (Saale)
| | - Johannes Wohlrab
- An‐Institut für angewandte Dermatopharmazie Martin‐Luther‐Universität Halle‐Wittenberg Halle (Saale)
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie Martin‐ Luther‐Universität Halle‐Wittenberg Halle (Saale)
| |
Collapse
|
13
|
Kalantari Y, Sadeghi S, Asadi D, Goodarzi A. A literature review on Janus kinase (JAK) inhibitors for the treatment of immunobullous disorders. Int Immunopharmacol 2022; 110:108923. [PMID: 35717838 DOI: 10.1016/j.intimp.2022.108923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) are a group of intracytoplasmic tyrosine kinase proteins that bind to the cytoplasmic part of the transmembrane cytokine receptors and regulate signaling. The pathophysiology of various autoimmune and autoinflammatory conditions relies on JAK/STAT signaling and therefore, the inhibition of JAK/STAT pathways can be a promising treatment for such diseases, especially inflammatory skin conditions. The current study aimed to evaluate the efficacy of JAK inhibitors in the treatment of immunobullous diseases, including pemphigus, pemphigoid, dermatitis herpetiformis, and epidermolysis bullosa. The databases used to identify the studies were Web of Science, Scopus, and PubMed/Medline for studies published until 2/3/2022. The current review suggests that JAK inhibitors may be revolutionary for the future treatments of dermatologic conditions, especially autoimmune bullous disease. Results also indicated the effectiveness of JAK inhibitors for the treatment of immunobullous diseases.
Collapse
Affiliation(s)
- Yasamin Kalantari
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran; Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Sadeghi
- Department of Pediatrics, Division of Dermatology, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada; Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Delaram Asadi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Goodarzi
- Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Djabarouti S, Mora P, Lahouati M, Gigan M, d’Houdain N, Sourisseau B, Chambord J, Xuereb F. Intérêt des dosages pharmacologiques d’immunosuppresseurs et immunomodulateurs dans la prise en charge des maladies autoimmunes. Rev Med Interne 2022; 43:412-418. [DOI: 10.1016/j.revmed.2022.03.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
15
|
Hadjadj J, Frémond ML, Neven B. Emerging Place of JAK Inhibitors in the Treatment of Inborn Errors of Immunity. Front Immunol 2021; 12:717388. [PMID: 34603291 PMCID: PMC8484879 DOI: 10.3389/fimmu.2021.717388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
Among inborn errors of immunity (IEIs), some conditions are characterized by inflammation and autoimmunity at the front line and are particularly challenging to treat. Monogenic diseases associated with gain-of-function mutations in genes critical for cytokine signaling through the JAK-STAT pathway belong to this group. These conditions represent good candidates for treatment with JAK inhibitors. Type I interferonopathies, a group of recently identified monogenic auto-inflammatory diseases characterized by excessive secretion of type I IFN, are also good candidates with growing experiences reported in the literature. However, many questions remain regarding the choice of the drug, the dose (in particular in children), the efficacy on the various manifestations, the monitoring of the treatment, and the management of potent side effects in particular in patients with infectious susceptibility. This review will summarize the current experiences reported and will highlight the unmet needs.
Collapse
Affiliation(s)
- Jérôme Hadjadj
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Hôpital Cochin, APHP-Centre Université de Paris (CUP), Paris, France
- Université de Paris, Institut Imagine, INSERMU1163, Laboratory of Immunogenetics of Pediatric Autoimmuninity, Paris, France
| | - Marie-Louise Frémond
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
- Université de Paris, Institut Imagine, Laboratory of Neurogenetics and Neuroinflammation, Paris, France
| | - Bénédicte Neven
- Université de Paris, Institut Imagine, INSERMU1163, Laboratory of Immunogenetics of Pediatric Autoimmuninity, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
| |
Collapse
|
16
|
Gatti M, Turrini E, Raschi E, Sestili P, Fimognari C. Janus Kinase Inhibitors and Coronavirus Disease (COVID)-19: Rationale, Clinical Evidence and Safety Issues. Pharmaceuticals (Basel) 2021; 14:ph14080738. [PMID: 34451835 PMCID: PMC8401109 DOI: 10.3390/ph14080738] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
We are witnessing a paradigm shift in drug development and clinical practice to fight the novel coronavirus disease (COVID-19), and a number of clinical trials have been or are being testing various pharmacological approaches to counteract viral load and its complications such as cytokine storm. However, data on the effectiveness of antiviral and immune therapies are still inconclusive and inconsistent. As compared to other candidate drugs to treat COVID-19, Janus Kinase (JAK) inhibitors, including baricitinib and ruxolitinib, possess key pharmacological features for a potentially successful repurposing: convenient oral administration, favorable pharmacokinetic profile, multifunctional pharmacodynamics by exerting dual anti-inflammatory and anti-viral effects. Baricitinib, originally approved for rheumatoid arthritis, received Emergency Use Authorization in November 2020 by the Food and Drug Administration in combination with remdesivir for the treatment of COVID-19 in hospitalized patients ≥ 2 years old who require supplemental oxygen, invasive mechanical ventilation, or extracorporeal membrane oxygenation. By July 2021, the European Medicines Agency is also expected to issue the opinion on whether or not to extend its use in hospitalised patients from 10 years of age who require supplemental oxygen. Ruxolitinib, approved for myelofibrosis, was prescribed in patients with COVID-19 within an open-label Emergency Expanded Access Plan. This review will address key milestones in the discovery and use of JAK inhibitors in COVID-19, from artificial intelligence to current clinical evidence, including real world experience, and critically appraise emerging safety issues, namely infections, thrombosis, and liver injury. An outlook to ongoing studies (ClinicalTrials.gov) and unpublished pharmacovigilance data is also offered.
Collapse
Affiliation(s)
- Milo Gatti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum—Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy;
- SSD Clinical Pharmacology, IRCCS Azienda Ospedaliero Universitaria Sant’Orsola, 40126 Bologna, Italy
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, C.so D’Augusto 237, 47921 Rimini, Italy;
| | - Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum—Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy;
- Correspondence: (E.R.); (C.F.)
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, C.so D’Augusto 237, 47921 Rimini, Italy;
- Correspondence: (E.R.); (C.F.)
| |
Collapse
|
17
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|