1
|
Tahir A, Aslam S, Sohail S, Ud Din F, Alamri AH, Lahiq AA, Alsharif ST, Asiri A. Development of paroxetine loaded nanotransferosomal gel for intranasal delivery with enhanced antidepressant activity in rats. Colloids Surf B Biointerfaces 2024; 246:114351. [PMID: 39522288 DOI: 10.1016/j.colsurfb.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The aim of this study was to develop paroxetine (PXT) loaded nanotransferosomal gel (PXT-NTFG) for intranasal brain delivery. The process involved fabricating PXT-NTFs (paroxetine-loaded nanotransferosomes) through a thin film hydration method and optimizing them based on parameters such as particle size (PS), zeta potential (ZP), polydispersity index (PDI), and entrapment efficiency (EE). The optimized PXT-NTFs exhibited uniform morphology with a PS of 158.30 ± 2.73 nm, low PDI (0.142 ± 0.072), high ZP (21.00 ± 0.75 mV), and excellent EE (88.09 ± 3.40 %). Characterization through various techniques confirmed the incorporation of PXT into the nanotransferosomes and its conversion to amorphous state. Moreover, PXT-NTFG was formulated with suitable viscosity and mucoadhesive properties. In vitro release studies demonstrated sustained drug release from PXT-NTFG at different pH levels as compared to PXT-NTFs and NTF dispersion. Similarly, ex vivo experiments showed 4 folds enhanced drug permeation from PXT-NTFG when compared with PXT conventional gel. Stability studies indicated that the optimized PXT-NTFs remained stable for four months at 4°C and 25°C. Additionally, improved behavioral outcomes, increased neuronal survival rates, and upregulated brain-derived neurotrophic factor (BDNF) expression was observed in lipopolysaccharide (LPS) induced depressed Sprague-Dawley rats after treatment with PXT-NTFG as compared to PXT-dispersion treated and untreated LPS-control groups. Notably, the formulation led to a significant reduction in brain and plasma TNF-α levels. In conclusion, intranasal PXT-NTFG is a promising formulation with sustained drug release, improved brain targeting and enhanced antidepressant activity.
Collapse
Affiliation(s)
- Asma Tahir
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sidra Aslam
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; College of Pharmacy, University of Sargodha, Sargodha Pakistan
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66262, Saudi Arabia
| | - Shaker T Alsharif
- Pharmaceutical Science Department, College of Pharmacy Umm AlQura University Makkah 21955, Saudi Arabia
| | - Abdullah Asiri
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
2
|
Pasha M, Zamir A, Rasool MF, Saeed H, Ahmad T, Alqahtani NS, Alqahtani LS, Alqahtani F. A Comprehensive Physiologically Based Pharmacokinetic Model for Predicting Vildagliptin Pharmacokinetics: Insights into Dosing in Renal Impairment. Pharmaceuticals (Basel) 2024; 17:924. [PMID: 39065773 PMCID: PMC11280059 DOI: 10.3390/ph17070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is of great importance in the field of medicine. This study aims to construct a PBPK model, which can provide reliable drug pharmacokinetic (PK) predictions in both healthy and chronic kidney disease (CKD) subjects. To do so, firstly a review of the literature was thoroughly conducted and the PK information of vildagliptin was collected. PBPK modeling software, PK-Sim®, was then used to build and assess the IV, oral, and drug-specific models. Next, the average fold error, visual predictive checks, and predicted/observed ratios were used for the assessment of the robustness of the model for all the essential PK parameters. This evaluation demonstrated that all PK parameters were within an acceptable limit of error, i.e., 2 fold. Also to display the influence of CKD on the total and unbound AUC (the area under the plasma concentration-time curve) and to make modifications in dose, the analysis results of the model on this aspect were further examined. This PBPK model has successfully depicted the variations of PK of vildagliptin in healthy subjects and patients with CKD, which can be useful for medical practitioners in dosage optimization in renal disease patients.
Collapse
Affiliation(s)
- Mahnoor Pasha
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.P.); (A.Z.)
| | - Ammara Zamir
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.P.); (A.Z.)
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (M.P.); (A.Z.)
| | - Hamid Saeed
- Section of Pharmaceutics, University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Tanveer Ahmad
- Institute for Advanced Biosciences (IAB), CNRS UMR5309, INSERM U1209, Grenoble Alpes University, 38700 La Tronche, France;
| | - Nawaf Shalih Alqahtani
- King Abdulaziz Medical City, Riyadh Region Ministry of National Guard, Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Lamya Saif Alqahtani
- Department of Cardiology, Prince Sultan Cardiac Center, Riyadh 11625, Saudi Arabia;
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Krumpholz L, Clarke JF, Polak S, Wiśniowska B. An open-access data set of pig skin anatomy and physiology for modelling purposes. Database (Oxford) 2022; 2022:6754191. [PMID: 36208224 PMCID: PMC9547536 DOI: 10.1093/database/baac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
The use of animal as opposed to human skin for in vitro permeation testing (IVPT) is an alternative, which can reduce logistical and economic issues. However, this surrogate also has ethical considerations and may not provide an accurate estimation of dermal absorption in humans due to physiological differences. The current project aimed to provide a detailed repository for the anatomical and physiological parameters of porcine skin, with the aim of parametrizing the Multi-phase Multi-layer Mechanistic Dermal Absorption (MPML MechDermA) Model in the Simcyp Simulator. The MPML MechDermA Model is a physiologically based pharmacokinetic (PBPK) model that accounts for the physiology and geometry of skin in a mechanistic mathematical modelling framework. The database provided herein contains information on 14 parameters related to porcine skin anatomy and physiology, namely, skin surface pH, number of stratum corneum (SC) layers, SC thickness, corneocyte thickness, corneocyte dimensions (length and width), volume fraction of water in corneocyte (where SC is divided into four parts with different water contents), intercellular lipid thickness, viable epidermis thickness, dermis thickness, hair follicle and hair shaft diameter, hair follicle depth and hair follicle density. The collected parameters can be used to parameterize PBPK models, which could be further utilized to bridge the gap between animal and human studies with interspecies extrapolation or to predict dermatokinetic properties typically assessed in IVPT experiments. Database URL: https://data.mendeley.com/datasets/mwz9xv4cpd/1.
Collapse
Affiliation(s)
- Laura Krumpholz
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Doctoral School in Medical and Health Sciences, Jagiellonian University Medical College, Łazarza Str. 16, Kraków 31-530, Poland
| | - James F Clarke
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield S1 2BJ, UK
| | | |
Collapse
|
4
|
Liu H, Yu Y, Guo N, Wang X, Han B, Xiang X. Application of Physiologically Based Pharmacokinetic Modeling to Evaluate the Drug-Drug and Drug-Disease Interactions of Apatinib. Front Pharmacol 2021; 12:780937. [PMID: 34880763 PMCID: PMC8645681 DOI: 10.3389/fphar.2021.780937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Apatinib is an orally administered vascular epidermal growth factor receptor (VEGFR)-tyrosine kinase inhibitors approved for the treatment of advanced gastric adenocarcinoma or gastric esophageal junction adenocarcinoma. Apatinib is predominantly metabolized by CYP3A4/5, followed by CYP2D6. The present study aimed to evaluate the potential drug–drug interaction (DDI) and drug–disease interaction (DDZI) risks of apatinib in Chinese volunteers. Methods: Modeling and simulation were conducted using Simcyp Simulator. The input parameters required for modeling were obtained from literature research or experiments. Then, the developed physiologically based pharmacokinetic (PBPK) models were applied to evaluate single-dose DDI potential in Chinese healthy volunteers with weak and moderate CYP3A inhibitors, strong CYP2D6 inhibitors, as well as CYP3A4 inducers. The DDZI potential was also predicted in patients with hepatic or renal impairment. Results: The developed PBPK models accurately assessed apatinib pharmacokinetics following single-dose administration in Chinese healthy volunteers and cancer patients. The DDI simulation showed 2–4-fold changes in apatinib exposures by moderate CYP3A4 inhibitors and CYP3A4 inducers. A moderate increase of apatinib exposure (1.25–2-fold) was found with strong CYP2D6 inhibitor. In the DDZI simulation with hepatic impairment, the AUC of apatinib was significantly increased by 2.25-fold and 3.04-fold for Child–Pugh B and Child–Pugh C, respectively, with slightly decreased Cmax by 1.54 and 1.67-fold, respectively. Conclusion: The PBPK models developed in the present study would be highly beneficial to quantitatively predict the pharmacokinetic changes of apatinib under different circumstances, which might be difficult to evaluate clinically, so as to avoid some risks in advance.
Collapse
Affiliation(s)
- Hongrui Liu
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yiqun Yu
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaojuan Wang
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
5
|
A Physiologically Based Pharmacokinetic Model for Predicting Diazepam Pharmacokinetics after Intravenous, Oral, Intranasal, and Rectal Applications. Pharmaceutics 2021; 13:pharmaceutics13091480. [PMID: 34575556 PMCID: PMC8465253 DOI: 10.3390/pharmaceutics13091480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Diazepam is one of the most prescribed anxiolytic and anticonvulsant that is administered through intravenous (IV), oral, intramuscular, intranasal, and rectal routes. To facilitate the clinical use of diazepam, there is a need to develop formulations that are convenient to administer in ambulatory settings. The present study aimed to develop and evaluate a physiologically based pharmacokinetic (PBPK) model for diazepam that is capable of predicting its pharmacokinetics (PK) after IV, oral, intranasal, and rectal applications using a whole-body population-based PBPK simulator, Simcyp®. The model evaluation was carried out using visual predictive checks, observed/predicted ratios (Robs/pred), and the average fold error (AFE) of PK parameters. The Diazepam PBPK model successfully predicted diazepam PK in an adult population after doses were administered through IV, oral, intranasal, and rectal routes, as the Robs/pred of all PK parameters were within a two-fold error range. The developed model can be used for the development and optimization of novel diazepam dosage forms, and it can be extended to simulate drug response in situations where no clinical data are available (healthy and disease).
Collapse
|
6
|
Sip S, Rosiak N, Miklaszewski A, Talarska P, Dudziec E, Cielecka-Piontek J. Amorphous Form of Carvedilol Phosphate-The Case of Divergent Properties. Molecules 2021; 26:molecules26175318. [PMID: 34500748 PMCID: PMC8434513 DOI: 10.3390/molecules26175318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/03/2023] Open
Abstract
The amorphous form of carvedilol phosphate (CVD) was obtained as a result of grinding. The identity of the obtained amorphous form was confirmed by powder X-ray diffraction (PXRD), different scanning calorimetry (DSC), and FT-IR spectroscopy. The process was optimized in order to obtain the appropriate efficiency and time. The crystalline form of CVD was used as the reference standard. Solid dispersions of crystalline and amorphous CVD forms with hydrophilic polymers (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®) were obtained. Their solubility at pH 1.2 and 6.8 was carried out, as well as their permeation through a model system of biological membranes suitable for the gastrointestinal tract (PAMPA-GIT) was established. The influence of selected polymers on CVD properties was defined for the amorphous form regarding the crystalline form of CVD. As a result of grinding (four milling cycles lasting 15 min with 5 min breaks), amorphous CVD was obtained. Its presence was confirmed by the “halo effect” on the diffraction patterns, the disappearance of the peak at 160.5 °C in the thermograms, and the changes in position/disappearance of many characteristic bands on the FT-IR spectra. As a result of changes in the CVD structure, its lower solubility at pH 1.2 and pH 6.8 was noted. While the amorphous dispersions of CVD, especially with Pluronic® F-127, achieved better solubility than combinations of crystalline forms with excipients. Using the PAMPA-GIT model, amorphous CVD was assessed as high permeable (Papp > 1 × 10−6 cm/s), similarly with its amorphous dispersions with excipients (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®), although in their cases, the values of apparent constants permeability were decreased.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland;
| | - Patrycja Talarska
- Department of Immunobiology, Poznan University of Medical Sciences, ul. Rokietnicka 8, 60-806 Poznan, Poland;
| | - Ewa Dudziec
- Department of Rheumatology and Rehabilitation, Poznan University of Medical Sciences, ul. 28 Czerwca 1956 r. 135/147, 61-545 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
- Correspondence:
| |
Collapse
|