1
|
de Moraes FCA, de Oliveira Rodrigues ALS, Priantti JN, Limachi-Choque J, Burbano RMR. Efficacy and Safety of Anti-EGFR Therapy Rechallenge in Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. J Gastrointest Cancer 2024; 56:9. [PMID: 39436445 DOI: 10.1007/s12029-024-01128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) represents the second leading cause of cancer-related mortality worldwide, with a significant portion of patients presenting with metastatic disease at diagnosis. Resistance to initial anti-EGFR therapy, a key treatment for RAS wild-type metastatic CRC, remains a major challenge. This study aimed to assess the efficacy and safety of rechallenge with anti-EGFR therapy in patients with metastatic CRC who have progressed after prior treatments. METHODS A systematic search was conducted across PubMed, Web of Science, Cochrane, and Scopus. Studies were included if they were randomized controlled trials (RCTs) or observational studies involving patients with EGFR-mutated metastatic CRC who received anti-EGFR therapy as a rechallenge. Endpoints included objective response rate (ORR), disease control rate (DCR), and the incidence of adverse events. Statistical analyses were performed using the DerSimonian/Laird random effect model, with heterogeneity assessed via I2 statistics. R, version 4.2.3, was used for statistical analyses. RESULTS Fourteen studies were included with 520 patients; 50.3% were male, and the median age was 63 years old. The median progression-free survival (mPFS) ranged between 2.4 and 4.9 months, while the median overall survival (mOS) ranged from 5 to 17.8 months. Our pooled analysis demonstrated an objective response rate (ORR) of 17.70% (95% CI, 8.58-26.82%) and a disease control rate (DCR) of 61.72% (95% CI, 53.32-70.11%), both with significant heterogeneity (I2, 84% and 80%, respectively; p < 0.01). In the subgroup analysis, cetuximab showed an ORR of 18.31% (95% CI, 4.67-31.94%), and panitumumab an ORR of 10.9% (95% CI, 0.00-26.82%), while the combination of both resulted in an ORR of 29.24% (95% CI, 0.00-65.84%). For DCR, cetuximab resulted in 62.1% (95% CI, 49.32-74.87%), panitumumab in 63.05% (95% CI, 52.13-73.97%), and the combination in 60.34% (95% CI, 31.92-88.77%), all with significant heterogeneity. Adverse events included anemia (15.39%), diarrhea (4.20%), hypomagnesemia (6.40%), neutropenia (22.57%), and skin rash (13.22%). CONCLUSIONS Rechallenge with anti-EGFR therapy in metastatic CRC patients shows moderate efficacy with manageable safety profiles. These findings highlight the need for careful patient selection and monitoring to optimize outcomes. Further studies are warranted to refine strategies for maximizing the therapeutic benefits of anti-EGFR rechallenge.
Collapse
|
2
|
Chen M, Ma S, Ji W, Hu W, Gao J, Yang J, Liu Y, Cui Q, Yang S, Xu X, Dai H, Hu L. Shenqi Sanjie Granules induce Hmox1-mediated ferroptosis to inhibit colorectal cancer. Heliyon 2024; 10:e38021. [PMID: 39347400 PMCID: PMC11437928 DOI: 10.1016/j.heliyon.2024.e38021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Background Because adverse reactions or drug resistance are often found after current chemotherapies for metastatic colorectal cancer (mCRC), new treatments are still in demand. Shenqi Sanjie Granules (SSG), an antitumor compound preparation of traditional Chinese medicine, has been recognized for its ability in clinical practice of oncotherapy. Nevertheless, the precise effects of SSG in colorectal cancer (CRC) and underlying mechanisms through which SSG inhibits CRC remain uncertain. The current study aimed to evaluate the anti-CRC activity of the Chinese herbal compound preparation SSG and investigate the underlying mechanisms of action. Materials and methods Initially, nine distinct cancer cell lines, including five CRC cell lines, one breast cancer cell line, two lung adenocarcinoma cell lines and one cervical cancer cell line, were used to evaluate the antitumor activity of SSG, and the mouse CRC cell line CT26 were used for further research. In vitro experiments utilizing diverse assays were conducted to assess the inhibitory effects of the SSG on CT26. Furthermore, subcutaneous syngeneic mouse model and AOM (azoxymethane)/DSS (dextran sodium sulfate) induced in-situ colitis-related mouse CRC model were used to evaluate the antitumor potential and biotoxicity of SSG in vivo. To elucidate the underlying molecular mechanisms, transcriptome sequencing and network pharmacology analysis were performed. Meanwhile, verification is carried out with quantitative real-time PCR (qRT-PCR) and flow cytometry (FCM) analysis. Results Our in vitro inhibition study showed that SSG could effectively inhibit CRC cell line CT26 growth and metastasis, and induce cell death. Neither of apoptosis inhibitor, necroptosis inhibitor, ferroptosis inhibitor, but the combination of the three diminished SSG-induced cell death, suggesting that multiple cell death pathways were involved. Both the syngeneic CRC model and the in-situ CRC model indicated SSG inhibited CRC in vivo with few toxic side effects. Further mechanistic study suggested SSG treatment activated the ferroptosis pathway, particularly mediated by Hmox1, which was upregulated scores of times. Network pharmacology analysis indicated that the active ingredients of SSG, including Quercetin, Luteolin and Kaempferol were potential components directly upregulated Hmox1 expression. Conclusions Collectively, our findings indicate that the administration of SSG has the potential to inhibit CRC both in vitro and in vivo. The mechanism by which this compound preparation exerts its action is, at least partly, the induction of ferroptosis through upregulating Hmox-1 by its three active ingredients Quercetin, Luteolin and Kaempferol.
Collapse
Affiliation(s)
- Meng Chen
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shengli Ma
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Wenbo Ji
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Weihua Hu
- Reproductive Medicine Center, the First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Jiguang Gao
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Jianke Yang
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Yu Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Qianwen Cui
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shasha Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaohui Xu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Lei Hu
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
3
|
Wang C, Teng X, Wang C, Liu B, Zhou R, Xu X, Qiu H, Fu Y, Sun R, Liang Z, Zhang R, Liu Z, Zhang L, Zhu L. Insight into the mechanism of Xiao-Chai-Hu-Tang alleviates irinotecan-induced diarrhea based on regulating the gut microbiota and inhibiting Gut β-GUS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155040. [PMID: 37683587 DOI: 10.1016/j.phymed.2023.155040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Irinotecan (CPT-11, Camptosar@) is a first-line drug for metastatic colorectal cancer. CPT-11-induced diarrhea, which is closely related to the concentrations of β-glucuronidase (β-GUS) and SN-38 in the gut, largely limits its clinical application. PURPOSE Herein, Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese formula, was applied to mitigate CPT-11-induced toxicity. This study initially explored the mechanism by which XCHT alleviated diarrhea, especially for β-GUS from the gut microbiota. METHODS First, we examined the levels of the proinflammatory cytokines and the anti-inflammatory cytokines in the intestine. Furthermore, we researched the community abundances of the gut microbiota in the CPT-11 and XCHT-treated mice based on 16S rRNA high-throughput sequencing technology. Meanwhile, the level of SN-38 and the concentrations of β-GUS in intestine were examined. We also resolved the 3D structure of β-GUS from gut microbiota by X-ray crystallography technology. Moreover, we used virtual screening, SPR analysis, and enzyme activity assays to confirm whether the main active ingredients from XCHT could selectively inhibit β-GUS. RESULTS In XCHT-treated mice, the levels of the proinflammatory cytokines decreased, the anti-inflammatory cytokines increased, and the community abundances of beneficial Firmicutes and Bacteroidota improved in the gut microbiota. We also found that the concentrations of β-GUS and the level of SN-38, the major ingredient that induces diarrhea in the gut, significantly decreased after coadministration of XCHT with CPT-11 in the intestine. Additionally, we revealed the structural differences of β-GUS from different gut microbiota. Finally, we found that EcGUS had good affinity with baicalein and meanwhile could be selectively inhibited by baicalein from XCHT. CONCLUSIONS Overall, XCHT could relieve the delayed diarrhea induced by CPT-11 through improving the abundance of beneficial gut microbiota and reduced inflammation. Furthermore, based on the three-dimensional structure, baicalein, especially, could be used as a candidate EcGUS inhibitor to alleviate CPT-11-induced diarrhea.
Collapse
Affiliation(s)
- Caiyan Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaojun Teng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chuang Wang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Binjie Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Runze Zhou
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xueyu Xu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Huawei Qiu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yu Fu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, Texas 77204, United States
| | - Zuhui Liang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Lijun Zhu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
4
|
de With M, van Doorn L, Kloet E, van Veggel A, Matic M, de Neijs MJ, Oomen-de Hoop E, van Meerten E, van Schaik RHN, Mathijssen RHJ, Bins S. Irinotecan-Induced Toxicity: A Pharmacogenetic Study Beyond UGT1A1. Clin Pharmacokinet 2023; 62:1589-1597. [PMID: 37715926 PMCID: PMC10582127 DOI: 10.1007/s40262-023-01279-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Side effects of irinotecan treatment can be dose limiting and may impair quality of life. In this study, we investigated the correlation between single nucleotide polymorphisms (SNPs) in genes encoding enzymes involved in the irinotecan metabolism and transport, outside UGT1A1, and irinotecan-related toxicity. We focused on carboxylesterases, which are involved in formation of the active metabolite SN-38 and on drug transporters. METHODS Patients who provided written informed consent at the Erasmus Medical Center Cancer Institute to the Code Geno study (local protocol: MEC02-1002) or the IRI28-study (NTR-6612) were enrolled in the study and were genotyped for 15 SNPs in the genes CES1, CES2, SLCO1B1, ABCB1, ABCC2, and ABCG2. RESULTS From 299 evaluable patients, 86 patients (28.8%) developed severe irinotecan-related toxicity. A significantly higher risk of toxicity was seen in ABCG2 c.421C>A variant allele carriers (P = 0.030, OR 1.88, 95% CI 1.06-3.34). Higher age was associated with all grade diarrhea (P = 0.041, OR 1.03, 95% CI 1.00-1.06). In addition, CES1 c.1165-41C>T and CES1 n.95346T>C variant allele carriers had a lower risk of all-grade thrombocytopenia (P = 0.024, OR 0.42, 95% CI 0.20-0.90 and P = 0.018, OR 0.23, 95% CI 0.08-0.79, respectively). CONCLUSION Our study indicates that ABCG2 and CES1 SNPs might be used as predictive markers for irinotecan-induced toxicity.
Collapse
Affiliation(s)
- Mirjam de With
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Leni van Doorn
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Esmay Kloet
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Anne van Veggel
- Department of Clinical Chemistry, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Micha J de Neijs
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Esther van Meerten
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
He X, Lan H, Jin K, Liu F. Can immunotherapy reinforce chemotherapy efficacy? a new perspective on colorectal cancer treatment. Front Immunol 2023; 14:1237764. [PMID: 37790928 PMCID: PMC10543914 DOI: 10.3389/fimmu.2023.1237764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
As one of the main threats to human life (the fourth most dangerous and prevalent cancer), colorectal cancer affects many people yearly, decreases patients' quality of life, and causes irreparable financial and social damages. In addition, this type of cancer can metastasize and involve the liver in advanced stages. However, current treatments can't completely eradicate this disease. Chemotherapy and subsequent surgery can be mentioned among the current main treatments for this disease. Chemotherapy has many side effects, and regarding the treatment of this type of tumor, chemotherapy can lead to liver damage, such as steatohepatitis, steatosis, and sinus damage. These damages can eventually lead to liver failure and loss of its functions. Therefore, it seems that other treatments can be used in addition to chemotherapy to increase its efficiency and reduce its side effects. Biological therapies and immunotherapy are one of the leading suggestions for combined treatment. Antibodies (immune checkpoint blockers) and cell therapy (DC and CAR-T cells) are among the immune system-based treatments used to treat tumors. Immunotherapy targets various aspects of the tumor that may lead to 1) the recruitment of immune cells, 2) increasing the immunogenicity of tumor cells, and 3) leading to the elimination of inhibitory mechanisms established by the tumor. Therefore, immunotherapy can be used as a complementary treatment along with chemotherapy. This review will discuss different chemotherapy and immunotherapy methods for colorectal cancer. Then we will talk about the studies that have dealt with combined treatment.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Luque C, Cepero A, Perazzoli G, Mesas C, Quiñonero F, Cabeza L, Prados J, Melguizo C. In Vitro Efficacy of Extracts and Isolated Bioactive Compounds from Ascomycota Fungi in the Treatment of Colorectal Cancer: A Systematic Review. Pharmaceuticals (Basel) 2022; 16:22. [PMID: 36678519 PMCID: PMC9864996 DOI: 10.3390/ph16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Despite the advances and success of current treatments (e.g., chemotherapy), there are multiple serious side effects which require the development of new treatment strategies. In recent years, fungi have gained considerable attention as a source of extracts and bioactive compounds with antitumor capabilities because of their antimicrobial and antioxidant properties and even their anti-inflammatory and antiviral activities. In the present review, a systematic search of the existing literature in four electronic databases was carried out in which the antitumor activity against CRC cells of Ascomycota fungi extracts or compounds was tested. The systematical research in the four databases resulted in a total of 883 articles. After applying exclusion and inclusion criteria, a total of 75 articles were finally studied. The order Eurotiales was the most studied (46% of the articles), and the ethyl acetate extraction was the most used method (49% of the papers). Penicillium extracts and gliotoxin and acetylgliotoxin G bioactive compounds showed the highest cytotoxic activity. This review also focuses on the action mechanisms of the extracts and bioactive compounds of fungi against CRC, which were mediated by apoptosis induction and the arrest of the cell cycle, which induces a notable reduction in the CRC cell proliferation capacity, and by the reduction in cell migration that limits their ability to produce metastasis. Thus, the ability of fungi to induce the death of cancer cells through different mechanisms may be the basis for the development of new therapies that improve the current results, especially in the more advanced stages of the CCR.
Collapse
Affiliation(s)
- Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
7
|
Imyanitov EN, Iyevleva AG. Molecular tests for prediction of tumor sensitivity to cytotoxic drugs. Cancer Lett 2022; 526:41-52. [PMID: 34808283 DOI: 10.1016/j.canlet.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022]
Abstract
Chemotherapy constitutes the backbone of cancer treatment. Several predictive assays assist personalized administration of cytotoxic drugs and are recommended for use in a clinical setting. The deficiency of DNA repair by homologous recombination (HRD), which is caused by inactivation of BRCA1/2 genes or other genetic events, is associated with high tumor responsiveness to platinum compounds, bifunctional alkylating agents and topoisomerase II poisons. Low activity of MGMT predicts the efficacy of nitrosoureas and tetrazines. Some clinically established pharmacogenetic tests allow for the adjustment of drug dosage, for example, the analysis of DPYD allelic variants for administration of fluoropyrimidines and UGT1A1 genotyping for the use of irinotecan. While there are promising molecular predictors of tumor sensitivity to pemetrexed, gemcitabine and taxanes, they remain in the investigational stage and require additional validation. Comprehensive molecular analysis of tumors obtained from drug responders and non-responders is likely to reveal new clinically useful predictive markers for cytotoxic therapy.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia; Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia.
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia; Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia
| |
Collapse
|