1
|
Johansen JB, Nielsen JC, Kristensen J, Sandgaard NC. Troubleshooting the difficult left ventricular lead placement in cardiac resynchronization therapy: current status and future perspectives. Expert Rev Med Devices 2022; 19:341-352. [PMID: 35536115 DOI: 10.1080/17434440.2022.2075728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cardiac resynchronization therapy (CRT) is an important option in modern cardiac implantable electronic device (CIED) treatment. Techniques for left ventricular (LV) lead placement in the coronary sinus and its tributaries are neither well described nor studied systematically, despite attention regarding where to place the LV lead. AREAS COVERED This review presents specialized tools and techniques to overcome some of the most common problems encountered in LV lead placement in CRT. These tools and techniques are termed Interventional-CRT (I-CRT), as they share technology with other interventional procedures. The main principle in I-CRT, compared to the traditional Over-The-Wire technique, is to add better support for delivery of the LV lead through dedicated inner catheters that also allows more flexibility with use of more guidewires and better imaging with direct venography in the target vein. EXPERT OPINION Even though CRT is an established therapeutic option, there are still many challenges in the implementation of the therapy. The cornerstone should be an ease of delivering the CRT and specifically implantation of the LV lead. Therefore, knowledge of the principles in I-CRT, as I-CRT could make implantation simpler in general and easier to reach the optimal LV pacing site.
Collapse
Affiliation(s)
| | - Jens Cosedis Nielsen
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Kristensen
- Department of Cardiology, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
2
|
Rodero C, Strocchi M, Lee AWC, Rinaldi CA, Vigmond EJ, Plank G, Lamata P, Niederer SA. Impact of anatomical reverse remodelling in the design of optimal quadripolar pacing leads: A computational study. Comput Biol Med 2022; 140:105073. [PMID: 34852973 PMCID: PMC8752960 DOI: 10.1016/j.compbiomed.2021.105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Lead position is an important factor in determining response to Cardiac Resynchronization Therapy (CRT) in dyssynchronous heart failure (HF) patients. Multipoint pacing (MPP) enables pacing from multiple electrodes within the same lead, improving the potential outcome for patients. Virtual quadripolar lead designs were evaluated by simulating pacing from all combinations of 1 and 2 electrodes along the lead in each virtual patient from cohorts of HF (n = 24) and simulated reverse remodelled (RR, n = 20) patients. Electrical synchrony was assessed by the time 90% of the ventricular myocardium is activated (AT090). Optimal 1 and 2 electrode pacing configurations for AT090 were combined to identify the 4-electrode lead design that maximised benefits across all patients. LV pacing in the HF cohort in all possible single and double electrode locations reduced AT090 by 14.48 ± 5.01 ms (11.92 ± 3.51%). The major determinant of reduction in activation time was patient anatomy. Pacing with a single optimal lead design reduced AT090 more in the HF cohort than the RR cohort (12.68 ± 3.29% vs 10.81 ± 2.34%). Pacing with a single combined HF and RR population-optimised lead design achieves electrical resynchronization with near equivalence to personalised lead designs both in HF and RR anatomies. These findings suggest that although lead configurations have to be tailored to each patient, a single optimal lead design is sufficient to obtain near-optimal results across most patients. This study shows the potential of virtual clinical trials as tools to compare existing and explore new lead designs.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom.
| | - Marina Strocchi
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom
| | - Angela W C Lee
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom
| | - Christopher A Rinaldi
- King's College London, Interdisciplinary Medical Imaging Group, London, United Kingdom
| | - Edward J Vigmond
- Institute of Electrophysiology and Heart Modeling, Foundation Bordeaux University, Bordeaux, France; Bordeaux Institute of Mathematics, UMR-5251, University of Bordeaux, Bordeaux, France
| | - Gernot Plank
- Medical University of Graz, Gottfried Schatz Research Center - Biophysics, Graz, Austria
| | - Pablo Lamata
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom
| | - Steven A Niederer
- Cardiac Electro-Mechanics Research Group, Biomedical Engineering Department, King ́s College London, London, United Kingdom
| |
Collapse
|
3
|
Monaci S, Gillette K, Puyol-Antón E, Rajani R, Plank G, King A, Bishop M. Automated Localization of Focal Ventricular Tachycardia From Simulated Implanted Device Electrograms: A Combined Physics-AI Approach. Front Physiol 2021; 12:682446. [PMID: 34276403 PMCID: PMC8281305 DOI: 10.3389/fphys.2021.682446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Focal ventricular tachycardia (VT) is a life-threating arrhythmia, responsible for high morbidity rates and sudden cardiac death (SCD). Radiofrequency ablation is the only curative therapy against incessant VT; however, its success is dependent on accurate localization of its source, which is highly invasive and time-consuming. Objective: The goal of our study is, as a proof of concept, to demonstrate the possibility of utilizing electrogram (EGM) recordings from cardiac implantable electronic devices (CIEDs). To achieve this, we utilize fast and accurate whole torso electrophysiological (EP) simulations in conjunction with convolutional neural networks (CNNs) to automate the localization of focal VTs using simulated EGMs. Materials and Methods: A highly detailed 3D torso model was used to simulate ∼4000 focal VTs, evenly distributed across the left ventricle (LV), utilizing a rapid reaction-eikonal environment. Solutions were subsequently combined with lead field computations on the torso to derive accurate electrocardiograms (ECGs) and EGM traces, which were used as inputs to CNNs to localize focal sources. We compared the localization performance of a previously developed CNN architecture (Cartesian probability-based) with our novel CNN algorithm utilizing universal ventricular coordinates (UVCs). Results: Implanted device EGMs successfully localized VT sources with localization error (8.74 mm) comparable to ECG-based localization (6.69 mm). Our novel UVC CNN architecture outperformed the existing Cartesian probability-based algorithm (errors = 4.06 mm and 8.07 mm for ECGs and EGMs, respectively). Overall, localization was relatively insensitive to noise and changes in body compositions; however, displacements in ECG electrodes and CIED leads caused performance to decrease (errors 16-25 mm). Conclusion: EGM recordings from implanted devices may be used to successfully, and robustly, localize focal VT sources, and aid ablation planning.
Collapse
Affiliation(s)
| | - Karli Gillette
- Division of Biophysics, Medical University of Graz, Graz, Austria
| | | | | | - Gernot Plank
- Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Andrew King
- King’s College London, London, United Kingdom
| | | |
Collapse
|
4
|
Monaci S, Strocchi M, Rodero C, Gillette K, Whitaker J, Rajani R, Rinaldi CA, O'Neill M, Plank G, King A, Bishop MJ. In-silico pace-mapping using a detailed whole torso model and implanted electronic device electrograms for more efficient ablation planning. Comput Biol Med 2020; 125:104005. [PMID: 32971325 DOI: 10.1016/j.compbiomed.2020.104005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Pace-mapping is a commonly used electrophysiological (EP) procedure which aims to identify exit sites of ventricular tachycardia (VT) by matching ventricular activation patterns (assessed by QRS morphology) at specific pacing locations with activation during VT. However, long procedure durations and the need for VT induction render this technique non-optimal. To demonstrate the potential of in-silico pace-mapping, using stored electrogram (EGM) recordings of clinical VT from implanted devices to guide pre-procedural ablation planning. METHOD Six scar-related VT episodes were simulated in a 3D torso model reconstructed from computed tomography (CT) imaging data, including three different infarct anatomies mapped from infarcted porcine imaging data. In-silico pace-mapping was performed to localise VT exit sites and isthmuses by using 12-lead electrocardiogram (ECG) signals and different combinations of EGM sensing vectors from implanted devices, through the creation of conventional correlation maps and reference-less maps. RESULTS Our in-silico platform was successful in identifying VT exit sites for a variety of different VT morphologies from both ECG correlation maps and corresponding EGM maps, with the latter dependent upon the number of sensing vectors used. We also showed the added utility of both ECG and EGM reference-less pace-mapping for the identification of slow-conducting isthmuses, uncovering the optimal algorithm parameters. Finally, EGM-based pace-mapping was shown to be more dependent upon the mapped surface (epicardial/endocardial), relative to the VT origin. CONCLUSIONS In-silico pace-mapping can be used along with EGMs from implanted devices to localise VT ablation targets in pre-procedural planning.
Collapse
Affiliation(s)
| | | | | | | | | | - Ronak Rajani
- King's College London, London, United Kingdom; Guy's and St Thomas' Hospital, London, United Kingdom
| | - Christopher A Rinaldi
- King's College London, London, United Kingdom; Guy's and St Thomas' Hospital, London, United Kingdom
| | | | | | - Andrew King
- King's College London, London, United Kingdom
| | | |
Collapse
|
5
|
Katbeh A, Van Camp G, Barbato E, Galderisi M, Trimarco B, Bartunek J, Vanderheyden M, Penicka M. Cardiac Resynchronization Therapy Optimization: A Comprehensive Approach. Cardiology 2019; 142:116-128. [PMID: 31117077 DOI: 10.1159/000499192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/26/2019] [Indexed: 11/19/2022]
Abstract
Since the first report on biventricular pacing in 1994, cardiac resynchronization therapy (CRT) has become standard for patients with advanced heart failure (HF) and ventricular conduction delay. CRT improves myocardial function by resynchronizing myocardial contraction, which results in reverse left ventricular remodeling and improves symptoms and clinical outcomes. Despite the accelerated development of CRT device technology and its increased application in treating HF patients, almost one-third of these patients do not respond to the therapy or gain any clinical benefit from device implantation. Over the last decade, multiple cardiac imaging modalities have provided a deeper understanding of myocardial pathophysiology, thereby improving HF treatment management. However, the optimal strategy for improving the CRT response remains debatable. This article provides an updated overview of the electropathophysiology of myocardial dysfunction in ventricular conduction delay and the diagnostic approaches involving the use of multiple modalities.
Collapse
Affiliation(s)
- Asim Katbeh
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium.,Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Guy Van Camp
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium.,Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Martin Penicka
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium,
| |
Collapse
|