1
|
Poirier L, Jacquet P, Plener L, Masson P, Daudé D, Chabrière E. Organophosphorus poisoning in animals and enzymatic antidotes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25081-25106. [PMID: 29959732 DOI: 10.1007/s11356-018-2465-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus compounds (OPs) are neurotoxic molecules developed as pesticides and chemical warfare nerve agents (CWNAs). Most of them are covalent inhibitors of acetylcholinesterase (AChE), a key enzyme in nervous systems, and are therefore responsible for numerous poisonings around the world. Many animal models have been studied over the years in order to decipher the toxicity of OPs and to provide insights for therapeutic and decontamination purposes. Environmental impact on wild animal species has been analyzed to understand the consequences of OP uses in agriculture. In complement, various laboratory models, from invertebrates to aquatic organisms, rodents and primates, have been chosen to study chronic and acute toxicity as well as neurobehavioral impact, immune response, developmental disruption, and other pathological signs. Several decontamination approaches were developed to counteract the poisoning effects of OPs. Among these, enzyme-based strategies are particularly attractive as they allow efficient external decontamination without toxicity or environmental impact and may be of interest for treatment. Approaches using bioscavengers for prophylaxis, treatment, and external decontamination are emphasized and their potential is discussed in the light of toxicological observations from various animal models. The relevance of animal models, regarding their cholinergic system and the abundance of naturally protecting enzymes, is also discussed for better extrapolation of results to human.
Collapse
Affiliation(s)
- Laetitia Poirier
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France.
| |
Collapse
|
2
|
[Organophosphorus poisoning: Towards enzymatic treatments]. ANNALES PHARMACEUTIQUES FRANÇAISES 2019; 77:349-362. [PMID: 31253354 DOI: 10.1016/j.pharma.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 11/22/2022]
Abstract
Organophosphorus compounds (OP) are toxic molecules developed as insecticides and chemical warfare nerve agents (CWNAs). Most OP are neurotoxic and act as nervous system disruptors by blocking cholinergic transmission. They are therefore responsible for many poisonings worldwide. OP toxicity may result either from acute or chronic exposure, and their poisoning effect were evaluated using several animal models. These latter were also used for evaluating the efficacy of antidotes. Strategies based on enzymes that can trap (stoichiometric bioscavengers) or degrade (catalytic bioscavengers) OP, were particularly studied since they allow effective decontamination, without toxicity or environmental impact. This review summarizes the results obtained in vivo with enzymes through three levels: prophylaxis, treatment and external decontamination. The efficiency of enzymatic treatments in different animal models is presented and the relevance of these models is also discussed for a better extrapolation to humans.
Collapse
|
3
|
Li D, Zhang Y, Song H, Lu L, Liu D, Yuan Y. Aminoalcohol-Induced Activation of Organophosphorus Hydrolase (OPH) towards Diisopropylfluorophosphate (DFP). PLoS One 2017; 12:e0169937. [PMID: 28085964 PMCID: PMC5234802 DOI: 10.1371/journal.pone.0169937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/22/2016] [Indexed: 11/19/2022] Open
Abstract
Aminoalcohols have been addressed as activating buffers for alkaline phosphatase. However, there is no record on the buffer activation regarding organophosphorus hydrolase (OPH). Here we reported the activating effects of aminoalcohols on OPH-catalyzed hydrolysis of diisopropylfluorophosphate (DFP), an analog molecule of G-type warfare agents. The kinetic parametors kcat, Vmax and kcat/Km in the OPH reaction were remarkably increased in the buffers (pH 8.0, 25°C) containing aminoalcohols with C2 between nitrogen (N) and oxygen (O) in their structures, including triethanolamine (TEA), diethanolamine, monoethanolamine, 1-amino-2-propanol, 2-amino-2-methyl-1-propanol, and triisopropanolamine. In contrast, much lower or no rate-enhancing effects were observed in the adding of amines, alcohols, amine/alcohol mixtures, or 3-amino-1-propanol (C3 between N and O). The 300 mM TEA further increased DFP-degrading activities of OPH mutants F132Y and L140Y, the previously reported OPH mutants with desirable activities towards DFP. However, the treatment of ethylenediaminetetraacetate (EDTA) markedly abolished the TEA-induced activation of OPH. The product fluoride effectively inhibited OPH-catalyzed hydrolysis of DFP by a linear mixed inhibition (inhibition constant Ki ~ 3.21 mM), which was partially released by TEA adding at initial or later reaction stage. The obtained results indicate the activation of OPH by aminoalcohol buffers could be attributed to the reduction of fluoride inhibition, which would be beneficial to the hydrolase-based detoxification of organophosphofluoridate.
Collapse
Affiliation(s)
- Dandan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, P. R. China
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yunze Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Haitao Song
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Liangqiu Lu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, P. R. China
- * E-mail: (YY); (DL)
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, P. R. China
- * E-mail: (YY); (DL)
| |
Collapse
|
4
|
Liu Y, Li J, Lu Y. Enzyme therapeutics for systemic detoxification. Adv Drug Deliv Rev 2015; 90:24-39. [PMID: 25980935 DOI: 10.1016/j.addr.2015.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.
Collapse
|
5
|
Abstract
The number of intoxications from xenobiotics—natural or synthetic foreign chemicals, or substances given in higher doses than typically present in humans—has risen tremendously in the last decade, placing poisoning as the leading external cause of death in the United States. This epidemic has fostered the development of antidotal nanomedicines, which we call “nano-antidotes,” capable of efficiently neutralizing offending compounds in situ. Although prototype nano-antidotes have shown efficacy in proof-of-concept studies, the gap to clinical translation can only be filled if issues such as the clinical relevance of intoxication models and the safety profile of nano-antidotes are properly addressed. As the unmet medical needs in resuscitative care call for better treatments, this Perspective critically reviews the recent progress in antidotal medicine and emerging nanotechnologies.
Collapse
Affiliation(s)
- Vincent Forster
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Petrikovics I, Wales M, Budai M, Yu JCC, Szilasi M. Nano-intercalated organophosphorus-hydrolyzing enzymes in organophosphorus antagonism. AAPS PharmSciTech 2012; 13:112-7. [PMID: 22160885 PMCID: PMC3299470 DOI: 10.1208/s12249-011-9728-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 11/08/2011] [Indexed: 11/30/2022] Open
Abstract
A dendritic poly(2-alkyloxazoline)-based polymer was studied as a new carrier system for the organophosphorus-hydrolyzing recombinant enzymes, organophosphorus acid anhydrolase and organophosphorus hydrolase. Paraoxon (PO) and diisopropylfluorophosphate (DFP) were used as model organophosphorus compounds. Changes in plasma cholinesterase activity were monitored. The cholinesterase activity was proportional to the concentrations of DFP or PO. Plasma cholinesterase activity was higher in animals receiving enzyme and oxime before the organophosphates than in the oxime-only pretreated groups. These studies suggest that cholinesterase activity can serve as an indicator for the in vivo protection by the nano-intercalated organophosphorus acid anhydrolase or organophosphorus hydrolase against organophosphorus intoxications. These studies represent a practical application of polymeric nano-delivery systems as enzyme carriers in drug antidotal therapy.
Collapse
Affiliation(s)
- Ilona Petrikovics
- Department of Chemistry, Sam Houston State University, Huntsville, Texas 77341, USA.
| | | | | | | | | |
Collapse
|
7
|
Wales ME, Reeves TE. Organophosphorus hydrolase as an in vivo catalytic nerve agent bioscavenger. Drug Test Anal 2012; 4:271-81. [DOI: 10.1002/dta.381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Melinda E. Wales
- Department of Biochemistry & Biophysics; Texas A&M University; College Station; TX; USA
| | - Tony E. Reeves
- Southwest Research Institute; Microencapsulation and Nanomaterials, Chemistry and Chemical Engineering Division; San Antonio; TX; USA
| |
Collapse
|
8
|
Szilasi M, Budai M, Budai L, Petrikovics I. Nanoencapsulated and microencapsulated enzymes in drug antidotal therapy. Toxicol Ind Health 2011; 28:522-31. [DOI: 10.1177/0748233711416946] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A catalytic bioscavenger for the therapeutic and prophylactic defense against recognized chemical threat agents has been a long-standing objective of civilian and military research. Among the toxic agents, organophosphate molecules and cyanide have been widely studied. In order to overcome the limitations of traditional antidotal therapies, isolated, purified, recombinant enzymes with bacterial origin possessing fast catalytic activity were used in in vitro and in vivo experiments. However, the fast degradation, excretion and adverse immunologic reaction against enzymes limit their in vivo use. Development of biodegradable, nontoxic carrier systems, microparticles, and nanoparticles—offering advantageous pharmacokinetic parameters was suggested. Present work deals with the perspectives of carrier systems, such as resealed and annealed erythrocytes and sterically stabilized liposomes. Dendritic polymers and polymer-conjugated enzymes, being in the focus of extensive research efforts nowadays, are also discussed.
Collapse
Affiliation(s)
- Mária Szilasi
- Department of Pulmonology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| | - Lívia Budai
- Department of Pharmaceutics, Semmelweis University, Budapest, Hungary
| | - Ilona Petrikovics
- Department of Chemistry, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
9
|
Petrikovics I, Baskin SI, Beigel KM, Schapiro BJ, Rockwood GA, Manage ABW, Budai M, Szilasi M. Nano-intercalated rhodanese in cyanide antagonism. Nanotoxicology 2011; 4:247-54. [PMID: 20795898 DOI: 10.3109/17435390903528254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Present studies have focused on nano-intercalated rhodanese in combination with sulfur donors to prevent cyanide lethality in a prophylactic mice model for future development of an effective cyanide antidotal system. Our approach is based on the idea of converting cyanide to the less toxic thiocyanate before it reaches the target organs by utilizing sulfurtransferases (e.g., rhodanese) and sulfur donors in a close proximity by injecting them directly into the blood stream. The inorganic thiosulfate (TS) and the garlic component diallydisulfide (DADS) were compared as sulfur donors with the nano-intercalated rhodanese in vitro and in vivo. The in vivo and in vitro experiments showed that DADS is not a more efficient sulfur donor than TS. However, the utilization of external rhodanese significantly enhanced the in vivo efficacy of both sulfur donor-nitrite combinations, indicating the potential usefulness of enzyme nano-delivery systems in developing antidotal therapeutic agents.
Collapse
Affiliation(s)
- Ilona Petrikovics
- U.S. Army Medical Research Institute of Chemical Defense, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kernchen RJ. Enzyme Stabilization in Nanostructured Materials, for Use in Organophosphorus Nerve Agent Detoxification and Prophylaxis. BIODEFENCE 2011. [DOI: 10.1007/978-94-007-0217-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|