1
|
Ikhsan LN, Chin KY, Ahmad F. The Potential of Dehydrated Geniotrigona thoracica Stingless Bee Honey against Metabolic Syndrome in Rats Induced by a High-Carbohydrate, High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1427. [PMID: 39598339 PMCID: PMC11597213 DOI: 10.3390/ph17111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metabolic syndrome (MS) is diagnosed when at least three out of five key risk factors are present: obesity, high blood pressure, insulin resistance, high triglycerides (TG) and low high-density lipoprotein (HDL). MS is often associated with chronic low-grade inflammation. Recent studies have shown that raw stingless bee honey (SBH) can alleviate MS risk factors. However, the high moisture content in raw SBH predisposes it to fermentation, which can degrade its quality. Therefore, dehydrating SBH is necessary to prevent the fermentation process. This study aimed to compare the effects of dehydrated (DeGT) and raw (RGT) SBH from Geniotrigona thoracica species on high-carbohydrate, high-fat diet (HCHF)-induced MS in rats. METHODS Twenty-four male Wistar rats were divided into four groups: control (C), HCHF-induced MS without treatment (MS), HCHF-induced MS treated with DeGT (MS+DeGT) and HCHF-induced MS treated with RGT (MS+RGT). Group C received standard rat chow, while the other groups were fed with HCHF diet for 16 weeks. In the final eight weeks, two HCHF-induced groups received their respective SBH treatments. RESULTS Both DeGT and RGT treatments reduced energy intake, fat mass, high blood pressure, inflammatory (tumour necrosis factor-alpha (TNF-α)) and obesity (the leptin/adiponectin (L/A) ratio, corticosterone, 11 beta-hydroxysteroid dehydrogenase type-1 (11βHSD1)) markers, as well as prevented histomorphometry changes (prevented adipocyte hypertrophy, increased the Bowman's space area and glomerular atrophy). Additionally, DeGT increased serum HDL levels, while RGT reduced serum TG, leptin and other inflammatory markers (interleukin-6 (IL-6) and interleukin-1 beta (IL-1β)), as well as hepatosteatosis. CONCLUSIONS While DeGT demonstrates potential as a preventive agent for MS, RGT exhibited more pronounced anti-MS effects in this study.
Collapse
Affiliation(s)
- Liyana Nabihah Ikhsan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Yang L, Zhang Z, Zhen Y, Feng J, Chen J, Song G. SIRT3 rs11246020 Polymorphism Associated Postprandial Triglyceride Dysmetabolism. Diabetes Metab Syndr Obes 2024; 17:1279-1288. [PMID: 38496003 PMCID: PMC10944304 DOI: 10.2147/dmso.s450962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose Energy metabolism is regulated by SIRT3, no research has been done on the connection between lipid metabolism in the oral fat test and SIRT3 polymorphism. Thus, we conducted a case-control study to investigate the connection between postprandial lipid and SIRT3 polymorphism. Patients and Methods 402 non-obese Chinese subjects were enrolled and their postprandial lipid response to oral fat tolerance test (OFTT) was observed to understand the relationship between rs11246020 gene and postprandial triglyceride metabolism. Results In a binary logic regression model, a protective effect of the T allele of the rs11246020 SIRT3 for postprandial hypertriglyceridemia was shown (OR=0.417, 95% CI = 0.219-0.794, p=0.008). Compared to the CC genotype, individuals with the TT+CT variant of the rs11246020 SIRT3 gene demonstrated significantly lower levels of homeostasis model assessment of insulin resistance (HOMA-IR) (p=0.04), postprandial plasma glucose (PPG) (p=0.037), fasting plasma glucose (FPG) (p=0.02), and 4-hour triglyceridemia (Tg) (p=0.032). Conclusion The C allele of rs11246020 SIRT3 gene may be a risk factor to increased possibility of postprandial triglyceridemia after an oral fat test, which involved in the mechanism of glucose and insulin metabolism.
Collapse
Affiliation(s)
- Liqun Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
- Hebei Key Laboratory of Metabolic Disease, Shijiazhuang, Hebei Province, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Zhimei Zhang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Yunfeng Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Jing Feng
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
- Hebei Key Laboratory of Metabolic Disease, Shijiazhuang, Hebei Province, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei Province, People’s Republic of China
| |
Collapse
|
3
|
Costabile G, Salamone D, Della Pepa G, Vitale M, Testa R, Cipriano P, Scidà G, Rivellese AA, Annuzzi G, Bozzetto L. Differential Effects of Two Isocaloric Healthy Diets on Postprandial Lipid Responses in Individuals with Type 2 Diabetes. Nutrients 2024; 16:333. [PMID: 38337618 PMCID: PMC10857261 DOI: 10.3390/nu16030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND High blood concentrations of triglycerides (TG) in the postprandial period have been shown to be more closely associated with the risk of cardiovascular disease (CVD) than fasting values in individuals with type 2 diabetes (T2D). Dietary changes are the primary determinants of postprandial lipid responses. METHODS We investigated the effects of an isocaloric multifactorial diet, rich in n-3 PUFA, MUFA, fiber, polyphenols, and vitamins, compared to an isocaloric diet, containing the same amount of MUFA, on the postprandial lipid response in T2D individuals. Following a randomized, controlled, parallel group design, 43 (25 male/18 female) T2D individuals were assigned to an isocaloric multifactorial (n = 21) or a MUFA-rich diet (n = 22). At the beginning and after the 8 weeks of dietary intervention, the concentrations of plasma triglycerides, total cholesterol, HDL cholesterol, and non-HDL cholesterol were detected at fasting and over a 4-h test meal with the same composition as the prescribed diet. RESULTS The concentrations of fasting plasma triglycerides, total cholesterol, HDL cholesterol, and non-HDL cholesterol did not change after both diets. Compared with the MUFA diet, the 8-week multifactorial diet significantly lowered the postprandial response, which was evaluated as the incremental area under the curve (iAUC), of triglycerides by 33% (64 ± 68 vs. 96 ± 50 mmol/L·240 min, mean ± SD, respectively, p = 0.018), total cholesterol by 105% (-51 ± 33 vs. -25 ± 29, p = 0.013), and non-HDL cholesterol by 206% (-39 ± 33 vs. -13 ± 23, p = 0.013). CONCLUSIONS In T2D individuals, a multifactorial diet, characterized by several beneficial components, improved the postprandial lipid response compared to a MUFA diet, generally considered a healthy diet being reduced in saturated fat, and probably contributed to the reduction of cardiovascular risk.
Collapse
Affiliation(s)
- Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Dominic Salamone
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Giuseppe Della Pepa
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Roberta Testa
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Paola Cipriano
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Giuseppe Scidà
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Angela Albarosa Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| | - Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, Federico II University, Via Sergio Pansini 5, 80131 Naples, Italy; (G.C.); (D.S.); (M.V.); (R.T.); (P.C.); (G.S.); (A.A.R.); (G.A.); (L.B.)
| |
Collapse
|
4
|
Hashim KN, Chin KY, Ahmad F. The Mechanism of Kelulut Honey in Reversing Metabolic Changes in Rats Fed with High-Carbohydrate High-Fat Diet. Molecules 2023; 28:2790. [PMID: 36985762 PMCID: PMC10056699 DOI: 10.3390/molecules28062790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Metabolic syndrome (MetS) is composed of central obesity, hyperglycemia, dyslipidemia and hypertension that increase an individual's tendency to develop type 2 diabetes mellitus and cardiovascular diseases. Kelulut honey (KH) produced by stingless bee species has a rich phenolic profile. Recent studies have demonstrated that KH could suppress components of MetS, but its mechanisms of action are unknown. A total of 18 male Wistar rats were randomly divided into control rats (C group) (n = 6), MetS rats fed with a high carbohydrate high fat (HCHF) diet (HCHF group) (n = 6), and MetS rats fed with HCHF diet and treated with KH (HCHF + KH group) (n = 6). The HCHF + KH group received 1.0 g/kg/day KH via oral gavage from week 9 to 16 after HCHF diet initiation. Compared to the C group, the MetS group experienced a significant increase in body weight, body mass index, systolic (SBP) and diastolic blood pressure (DBP), serum triglyceride (TG) and leptin, as well as the area and perimeter of adipocyte cells at the end of the study. The MetS group also experienced a significant decrease in serum HDL levels versus the C group. KH supplementation reversed the changes in serum TG, HDL, leptin, adiponectin and corticosterone levels, SBP, DBP, as well as adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) level, area and perimeter at the end of the study. In addition, histological observations also showed that KH administration reduced fat deposition within hepatocytes, and prevented deterioration of pancreatic islet and renal glomerulus. In conclusion, KH is effective in preventing MetS by suppressing leptin, corticosterone and 11βHSD1 levels while elevating adiponectin levels.
Collapse
Affiliation(s)
- Khairun-Nisa Hashim
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
5
|
Thomas MC, Coughlan MT, Cooper ME. The postprandial actions of GLP-1 receptor agonists: The missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab 2023; 35:253-273. [PMID: 36754019 DOI: 10.1016/j.cmet.2023.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.
Collapse
Affiliation(s)
- Merlin C Thomas
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Department of Biochemistry, Monash University, Melbourne, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052 VIC, Australia
| | - Mark E Cooper
- Department of Diabetes, Monash University, Central Clinical School, 99 Commercial Road, Melbourne, Australia.
| |
Collapse
|
6
|
Liu L, Hou X, Song A, Guan Y, Tian P, Wang C, Ren L, Tang Y, Gao L, Xing X, Song G. Oral fat tolerance testing identifies abnormal pancreatic β-cell function and insulin resistance in individuals with normal glucose tolerance. J Diabetes Investig 2022; 13:1805-1813. [PMID: 35678496 DOI: 10.1111/jdi.13867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Insulin sensitivity and β-cell function are affected by lipid metabolism disorders, even before the onset of type 2 diabetes. People are in the postprandial state most of the time. Therefore, identifying postprandial hyperlipemia is important. This study aimed to assess patients with abnormalities in lipid metabolism, but with normal glucose tolerance, using oral fat tolerance testing (OFTT) to identify defects in insulin sensitivity and β-cell function. MATERIALS AND METHODS We included 248 volunteers with normal glucose tolerance who underwent OFTT. They were divided into three groups in accordance with their fasting and 4-h postprandial triglyceride (TG) concentrations. Their lipid concentrations during OFTT were compared. The disposition index (DI) was applied to estimate β-cell function, and the Matsuda insulin sensitivity index (ISIM ) was used to assess insulin sensitivity. We used multiple linear regression analysis to estimate the relationships of fasting and postprandial TG concentrations with β-cell function and insulin sensitivity . RESULTS The changes in TG concentrations during OFTT were more marked than those in low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol or total cholesterol concentrations. As lipid metabolism deteriorated, the ISIM and the DI gradually decreased. Multiple linear regression analysis showed that fasting and 4-h postprandial TG concentrations affected LnISIM and LnDI. CONCLUSIONS In individuals with normal glucose tolerance, β-cell function and insulin sensitivity gradually decrease with a deterioration in the lipid profile. Not only fasting TG, but also postprandial TG concentrations are independent risk factors for impaired β-cell function and insulin resistance.
Collapse
Affiliation(s)
- Lifang Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - An Song
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Peipei Tian
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yong Tang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Kim HK, Furuhashi S, Takahashi M, Chijiki H, Nanba T, Inami T, Radak Z, Sakamoto S, Shibata S. Late-afternoon endurance exercise is more effective than morning endurance exercise at improving 24-h glucose and blood lipid levels. Front Endocrinol (Lausanne) 2022; 13:957239. [PMID: 35928886 PMCID: PMC9343590 DOI: 10.3389/fendo.2022.957239] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glucose and lipid tolerance reportedly exhibit diurnal variations, being lower in the evening than in the morning. Therefore, the effects of exercise on glucose and blood lipid levels at different times of the day may differ. This study aimed to investigate the effects of short-term endurance exercise intervention in the morning versus late afternoon on 24-h blood glucose variability and blood lipid levels. METHODS Twelve healthy young men participated in a randomized crossover trial. The participants were assigned to morning (09:00-11:00) or late afternoon (16:00-18:00) endurance exercise for a week, consisting of supervised exercise sessions on Mondays, Wednesdays, and Fridays. In the morning and evening trials, the participants walked for 60 min on a treadmill at approximately 60% of maximal oxygen uptake (VO2max). Following a 2-week wash-out period, the participants performed the exercise training regimen at another time point. Continuous glucose monitoring was used to evaluate blood glucose fluctuations during each 24-h trial period. Blood samples were collected before and after each intervention to examine blood lipid and hormonal responses. RESULTS Examination of the area under the curve (AUC) of the glucose level changes for 24 h after the late afternoon versus morning exercise intervention revealed significantly lower values for the former versus the latter (P < 0.01). The AUC of glucose level changes after each meal was also lower after the late afternoon versus morning intervention, and significantly lower values were observed in the late afternoon versus morning trial for breakfast and dinner (P < 0.05, P < 0.01). In addition, a significant decrease in triglycerides (TG) and TG/high-density lipoprotein cholesterol (HDL-C) was noted after versus before the late afternoon intervention (P < 0.05). CONCLUSIONS These results suggest that late afternoon endurance exercise is more effective than morning endurance exercise at improving 24-h glucose and triglyceride levels.
Collapse
Affiliation(s)
- Hyeon-Ki Kim
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Institute of Physical Education, Keio University, Yokohama, Japan
- *Correspondence: Hyeon-Ki Kim,
| | - Shota Furuhashi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo, Japan
| | - Hanako Chijiki
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takuya Nanba
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takayuki Inami
- Institute of Physical Education, Keio University, Yokohama, Japan
| | - Zsolt Radak
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Shizuo Sakamoto
- Faculty of Sport Sciences, Surugadai University, Saitama, Japan
| | | |
Collapse
|
8
|
Zhao Y, Liu L, Yang S, Liu G, Pan L, Gu C, Wang Y, Li D, Zhao R, Wu M. Mechanisms of Atherosclerosis Induced by Postprandial Lipemia. Front Cardiovasc Med 2021; 8:636947. [PMID: 33996937 PMCID: PMC8116525 DOI: 10.3389/fcvm.2021.636947] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Postprandial lipemia plays an important role in the formation, occurrence, and development of atherosclerosis, and it is closely related to coronary heart disease and other diseases involving endothelial dysfunction, oxidative stress, inflammation, and other mechanisms. Therefore, it has become a focus area for further research. The studies on postprandial lipemia mainly include TG, TRL, VLDL, CM, and remnant cholesterol. Diurnal triglyceride patterns and postprandial hyperlipidemia are very relevant and are now insufficiently covered. The possible mechanisms between postprandial lipemia and cardiovascular disease have been reviewed in this article by referring to relevant literature in recent years. The research progress on the effects of postprandial lipemia on endothelial function, oxidative stress, and inflammation is highlighted. The intervention of postprandial lipemia is discussed. Non-medicinal intervention such as diet and exercise improves postprandial lipemia. As medicinal intervention, statin, fibrate, ezetimibe, omega-3 fatty acids, and niacin have been found to improve postprandial lipid levels. Novel medications such as pemafibrate, PCSK9, and apoCIII inhibitors have been the focus of research in recent years. Gut microbiota is closely related to lipid metabolism, and some studies have indicated that intestinal microorganisms may affect lipid metabolism as environmental factors. Whether intervention of gut microbiota can reduce postprandial lipemia, and therefore against AS, may be worthy of further study.
Collapse
Affiliation(s)
- Yixi Zhao
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limin Pan
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun Gu
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Comprehensive Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Guan Y, Hou X, Tian P, Ren L, Tang Y, Song A, Zhao J, Gao L, Song G. Elevated Levels of Apolipoprotein CIII Increase the Risk of Postprandial Hypertriglyceridemia. Front Endocrinol (Lausanne) 2021; 12:646185. [PMID: 33967959 PMCID: PMC8103209 DOI: 10.3389/fendo.2021.646185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To investigate possible mechanisms of postprandial hypertriglyceridemia (PPT), we analyzed serum lipid and apolipoprotein (Apo) AI, B, CII and CIII levels before and after a high-fat meal. METHODS The study has been registered with the China Clinical Trial Registry (registration number:ChiCTR1800019514; URL: http://www.chictr.org.cn/index.aspx). We recruited 143 volunteers with normal fasting triglyceride (TG) levels. All subjects consumed a high-fat test meal. Venous blood samples were obtained during fasting and at 2, 4, and 6 hours after the high-fat meal. PPT was defined as TG ≥2.5 mmol/L any time after the meal. Subjects were divided into two groups according to the high-fat meal test results: postprandial normal triglyceride (PNT) and PPT. We compared the fasting and postprandial lipid and ApoAI, ApoB, ApoCII and ApoCIII levels between the two groups. RESULTS Significant differences were found between the groups in fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), TG, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), TG-rich lipoprotein remnants (TRLRs), ApoB, ApoCIII, ApoAI/ApoB and ApoCII/ApoCIII. The insulin, HOMA-IR, TG, TC, LDL-C, non-HDL-C, TRLRs, ApoB, ApoCIII and ApoCII/ApoCIII values were higher in the PPT group, while the ApoAI/ApoB ratio was higher in the PNT group. The postprandial TG level peaked in the PNT group 2 hours after the meal but was significantly higher in the PPT group and peaked at 4 hours. TRLRs gradually increased within 6 hours after the high-fat meal in both groups. The area under the curve (AUC) of TG and TRLRs and the AUC increment were higher in the PPT group (P < 0.001). ApoCIII peaked in the PNT group 2 hours after the meal and gradually decreased. ApoCIII gradually increased in the PPT group within 6 hours after the meal, exhibiting a greater AUC increment (P < 0.001). Fasting ApoCIII was positively correlated with age, systolic and diastolic blood pressure, body mass index (BMI), waist circumference, TC, TG, LDL-C, non-HDL-C, TRLRs, and ApoB (P<0.05). ApoCIII was an independent risk factor of PPT after adjustment for BMI, waist circumference, TC, LDL-C, and ApoB (P < 0.001, OR=1.188). CONCLUSIONS Elevated ApoCIII levels may cause PPT.
Collapse
Affiliation(s)
- Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Peipei Tian
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Yong Tang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - An Song
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Guangyao Song,
| |
Collapse
|
10
|
Guo Y, Huang Z, Sang D, Gao Q, Li Q. The Role of Nutrition in the Prevention and Intervention of Type 2 Diabetes. Front Bioeng Biotechnol 2020; 8:575442. [PMID: 33042976 PMCID: PMC7523408 DOI: 10.3389/fbioe.2020.575442] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is a rapidly growing epidemic, which leads to increased mortality rates and health care costs. Nutrients (namely, carbohydrates, fat, protein, mineral substances, and vitamin), sensing, and management are central to metabolic homeostasis, therefore presenting a leading factor contributing to T2D. Understanding the comprehensive effects and the underlying mechanisms of nutrition in regulating glucose metabolism and the interactions of diet with genetics, epigenetics, and gut microbiota is helpful for developing new strategies to prevent and treat T2D. In this review, we discuss different mechanistic pathways contributing to T2D and then summarize the current researches concerning associations between different nutrients intake and glucose homeostasis. We also explore the possible relationship between nutrients and genetic background, epigenetics, and metagenomics in terms of the susceptibility and treatment of T2D. For the specificity of individual, precision nutrition depends on the person’s genotype, and microbiota is vital to the prevention and intervention of T2D.
Collapse
Affiliation(s)
- Yajie Guo
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zihua Huang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dan Sang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiong Gao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
11
|
Ochiai M. Evaluating the appropriate oral lipid tolerance test model for investigating plasma triglyceride elevation in mice. PLoS One 2020; 15:e0235875. [PMID: 33022003 PMCID: PMC7537863 DOI: 10.1371/journal.pone.0235875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The oral lipid tolerance test (OLTT) has been known to assess intestinal fat metabolism and whole-body lipid metabolism, but rodent models for OLTT are not yet established. Differences in OLTT methodology preclude the generation of definitive results, which may cause some confusion about the anti-hypertriglyceridemia effects of the test materials. To standardize and generate more appropriate methodology for the OLTT, we examined the effects of mice strain, dietary lipid sources, fasting period, and gender on lipid-induced hypertriglyceridemia in mice. First, lipid-induced hypertriglyceridemia was more strongly observed in male ddY mice than in C57BL/6N or ICR mice. Second, the administration of olive and soybean oils remarkably represented lipid-induced hypertriglyceridemia. Third, fasting period before the OLTT largely affected the plasma triglyceride elevation. Fasting for 12 h, but less than 48 h, provoked lipid-induced hypertriglyceridemia. Fourth, we explored the suppressive effects of epigallocatechin gallate (EGCG), a green tea polyphenol, on lipid-induced hypertriglyceridemia. The administration of 100 mg/kg of EGCG suppressed lipid-induced hypertriglyceridemia and intestinal lipase activity. Fifth, EGCG-induced suppressive effects were observed after lipid-induced hypertriglyceridemia was observed in male mice, but not in female mice. Lastly, lipid-induced hypertriglyceridemia could be more effectively induced in mice fed a high-fat diet for 1 week before the OLTT. These findings indicate that male ddY mice after 12 h fasting displayed marked lipid-induced hypertriglyceridemia in response to soybean oil. Hence, the defined experiment condition may be a more appropriate OLTT model for evaluating lipid-induced hypertriglyceridemia.
Collapse
Affiliation(s)
- Masaru Ochiai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
- * E-mail:
| |
Collapse
|