1
|
Li Z. Novel perspectives on the pharmacological treatment of thyroid-associated ophthalmopathy. Front Endocrinol (Lausanne) 2025; 15:1469268. [PMID: 39872310 PMCID: PMC11769798 DOI: 10.3389/fendo.2024.1469268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), an autoimmune disease closely related to thyroid dysfunction, remains a challenging ophthalmic condition among adults. Its clinical manifestations are complex and diverse, and disease progression can lead to exophthalmos, diplopia, exposure keratitis, corneal ulceration, and compressive optic neuropathy, resulting in irreversible vision damage or even blindness. Traditional treatment methods for TAO, including glucocorticoids, immunosuppressants, and radiation therapy, often have limitations and side effects, making this disease problematic in ophthalmology. As a result, the development of novel targeted drugs has become a research hotspot for addressing the pathogenesis of TAO. A range of novel targeted drugs, such as teprotumumab and tocilizumab, have been successfully developed and demonstrated remarkable efficacy in relieving inflammation and managing this disease. In addition, some drug candidates and molecular targets identified in the TAO in vitro model have shown promising prospects. This article briefly reviews the potential new strategies for future clinical treatment and the progress of new drug therapies for TAO.
Collapse
Affiliation(s)
- Zilin Li
- No. 1 Teaching Hospital, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Croft M, Salek-Ardakani S, Ware CF. Targeting the TNF and TNFR superfamilies in autoimmune disease and cancer. Nat Rev Drug Discov 2024; 23:939-961. [PMID: 39448880 DOI: 10.1038/s41573-024-01053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
The first anti-tumour necrosis factor (TNF) monoclonal antibody, infliximab (Remicade), celebrated its 25th anniversary of FDA approval in 2023. Inhibitors of TNF have since proved clinically efficacious at reducing inflammation associated with several autoimmune diseases, including rheumatoid arthritis, psoriasis and Crohn's disease. The success of TNF inhibitors raised unrealistic expectations for targeting other members of the TNF superfamily (TNFSF) of ligands and their receptors, with difficulties in part related to their more limited, variable expression and potential redundancy. However, there has been a resurgence of interest and investment, with many of these cytokines or their cognate receptors now under clinical investigation as targets for modulation of autoimmune and inflammatory diseases, as well as cancer. This Review assesses TNFSF-targeted biologics currently in clinical development for immune system-related diseases, highlighting ongoing challenges and future directions.
Collapse
Affiliation(s)
- Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | | | - Carl F Ware
- Laboratory of Molecular Immunology, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Imbert A, Gavlovsky PJ, Judor JP, Bardou-Jacquet E, Elkrief L, Lannes A, Silvain C, Schnee M, Tanne F, Chevalier C, Vavasseur F, Khaldi M, Brouard S, Mosnier JF, Gournay J, Conchon S, Renand A. T cell immuno-phenotyping : a source of predictive biomarkers for autoimmune hepatitis relapse. Sci Rep 2024; 14:24448. [PMID: 39424872 PMCID: PMC11489469 DOI: 10.1038/s41598-024-75624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Relapse after immunosuppression (IS) treatment withdrawal is frequent in patients with Autoimmune Hepatitis (AIH), and non-invasive biomarkers predictive of this risk are lacking. We assessed the frequency of circulating T cell subsets as potential biomarkers of disease activity and predictor of the risk of relapse after IS withdrawal. Serum levels of the cytokine B-cell Activating Factor (BAFF) were also investigated. Blood samples from 58 patients with active AIH, 56 AIH patients in remission, and 31 patients with NASH were analyzed. The frequency of activated CD4+ T peripheral helper (TPH) cells (CD4+CD45RA-CXCR5-PD1+CD38+) and of activated CD8+ T cells (CD8+CD45RA-PD1+CD38+) were assessed by flow cytometry. BAFF levels were determined by ELISA. Activated TPH and CD8+ T cell frequencies were significantly increased in patients with active AIH compared to remission AIH or NASH (TPH: 0.88% of total CD3+ vs. 0.42% and 0.39% respectively, p < 0.0001; CD8+ subset: 1.42% vs. 0.09% and 0.11% p < 0.0001). Among patients in remission undergoing treatment withdrawal (n = 18), those with increased frequencies of activated TPH (> 0.5% of total CD3+) and/or activated CD8+ T cells (> 0.18% total CD3+) had a higher risk of relapse (80% vs. 15% after 2 years, p = 0.0071). High BAFF serum concentration (> 213pg/ml) was also associated to a higher risk of relapse (57% vs. 11%, p = 0.0452). In conclusion, high frequency of activated TPH and of activated CD8+, as well as high levels of BAFF, before IS discontinuation, were significantly associated to a greater risk of relapse during the first two years. Thus, they represent promising biomarkers to provide personalized clinical follow-up for patients with AIH.
Collapse
Affiliation(s)
- Astrid Imbert
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service Hépato-Gastroentérologie, IMAD, Nantes, France
| | - Pierre-Jean Gavlovsky
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Jean-Paul Judor
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | | | - Laure Elkrief
- CHRU Tours, Service Hépato-Gastroentérologie, Tours, France
| | - Adrien Lannes
- CHU Angers, Service Hépato-Gastroentérologie et Oncologie Digestive, Angers, France
- Université d'Angers, Laboratoire HIFIH, UPRES EA3859, SFR 4208, Angers, France
| | | | - Mathieu Schnee
- CHD Vendée-La Roche sur Yon, Service Hépato-Gastroentérologie, F- 85000, la Roche sur Yon, France
| | - Florence Tanne
- CHU Brest, Service Hépato-Gastroentérologie, Brest, France
| | - Caroline Chevalier
- CHU Nantes, INSERM, Centre d'Investigation Clinique IMAD, Nantes, France
| | - Fabienne Vavasseur
- CHU Nantes, INSERM, Centre d'Investigation Clinique IMAD, Nantes, France
| | - Marion Khaldi
- CHU Nantes, Nantes Université, Service Hépato-Gastroentérologie, IMAD, Nantes, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Jean-François Mosnier
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service Anatomie et Cytologie Pathologiques, Nantes, France
| | - Jérôme Gournay
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service Hépato-Gastroentérologie, IMAD, Nantes, France
| | - Sophie Conchon
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.
- CR2TI, UMR 1064, 30 Bd Jean Monnet, 44093, Nantes, France.
| | - Amédée Renand
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.
- CR2TI, UMR 1064, 30 Bd Jean Monnet, 44093, Nantes, France.
| |
Collapse
|
4
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Nagai K, Fujii W, Yamagishi J, Sanjoba C, Goto Y. Inflammatory CD11b + Macrophages Produce BAFF in Spleen of Mice Infected with Leishmania donovani. Pathogens 2024; 13:232. [PMID: 38535575 PMCID: PMC10975664 DOI: 10.3390/pathogens13030232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 02/11/2025] Open
Abstract
Visceral leishmaniasis (VL) is an infectious disease caused by parasitic protozoa of the genus Leishmania and manifests clinical symptoms such as splenomegaly, hepatomegaly, anemia, and fever. It has previously been shown that B-cell-activating factor (BAFF) is involved in splenomegaly during VL. Although BAFF is known to be expressed by a variety of cells, the mechanism of elevated BAFF expression in VL is not clear. In this study, we aimed to identify BAFF-producing cells in the spleens of mice infected with Leishmania donovani. Splenocytes of L. donovani-infected mice showed elevated BAFF expression compared to that of naive mice. In the infected spleen, the number of both CD11b+ and F4/80+ cells increased, and the major BAFF-producing cells were CD11b+ cells, which did not serve as host cells of Leishmania. Immunohistochemical/immunofluorescent staining of spleens of infected mice revealed that the increased CD11b+ cells were primarily MRP14+ mononuclear cells. Together, these results suggest the increased BAFF expression in the spleen of L. donovani-infected mice involves a recruitment of inflammatory macrophages distinct from host macrophages for the parasites.
Collapse
Affiliation(s)
- Kazuki Nagai
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (K.N.); (C.S.)
| | - Wataru Fujii
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Junya Yamagishi
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan;
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (K.N.); (C.S.)
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (K.N.); (C.S.)
| |
Collapse
|
6
|
Giordano D, Kuley R, Draves KE, Elkon KB, Giltiay NV, Clark EA. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Front Immunol 2023; 14:1050528. [PMID: 36923413 PMCID: PMC10009188 DOI: 10.3389/fimmu.2023.1050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose and methods B cell-activating factor (BAFF) contributes to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Although several anti-BAFF Abs and derivatives have been developed for the treatment of SLE, the specific sources of BAFF that sustain autoantibody (auto-Ab) producing cells have not been definitively identified. Using BAFF-RFP reporter mice, we identified major changes in BAFF-producing cells in two mouse spontaneous lupus models (Tlr7 Tg mice and Sle1), and in a pristane-induced lupus (PIL) model. Results First, we confirmed that similar to their wildtype Tlr7 Tg and Sle1 mice counterparts, BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice had increased BAFF serum levels, which correlated with increases in plasma cells and auto-Ab production. Next, using the RFP reporter, we defined which cells had dysregulated BAFF production. BAFF-producing neutrophils (Nphs), monocytes (MOs), cDCs, T cells and B cells were all expanded in the spleens of BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice compared to controls. Furthermore, Ly6Chi inflammatory MOs and T cells had significantly increased BAFF expression per cell in both spontaneous lupus models, while CD8- DCs up-regulated BAFF expression only in the Tlr7 Tg mice. Similarly, pristane injection of BAFF-RFP mice induced increases in serum BAFF levels, auto-Abs, and the expansion of BAFF-producing Nphs, MOs, and DCs in both the spleen and peritoneal cavity. BAFF expression in MOs and DCs, in contrast to BAFF from Nphs, was required to maintain homeostatic and pristane-induced systemic BAFF levels and to sustain mature B cell pools in spleens and BMs. Although acting through different mechanisms, Nph, MO and DC sources of BAFF were each required for the development of auto-Abs in PIL mice. Conclusions Our findings underscore the importance of considering the relative roles of specific myeloid BAFF sources and B cell niches when developing treatments for SLE and other BAFF-associated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- *Correspondence: Daniela Giordano,
| | - Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Keith B. Elkon
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Distinct binding mode of BAFF antagonist antibodies belimumab and tabalumab, analyzed by computer simulation. J Mol Model 2022; 28:292. [PMID: 36063219 DOI: 10.1007/s00894-022-05142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/24/2022] [Indexed: 10/14/2022]
Abstract
B cell-activating factor (BAFF) can bind with specific receptors to activate signalling pathways associated with the B cell activation. Belimumab and tabalumab are anti-BAFF (B cell depleting) monoclonal antibodies, with therapeutic efficacy demonstrated for the treatment of autoimmune disorders, while belimumab was approved by FDA in 2011 as a targeted therapy for systemic lupus erythematosus (SLE) and exhibited better clinical outcome than tabalumab. In this investigation, the combination modes of BAFF-belimumab and BAFF-tabalumab complexes were simulated in silico to better understand the reason for the comparative inhibitory difference between belimumab and tabalumab. The structures of belimumab and tabalumab were constructed through homology modelling. The combination mode of BAFF-belimumab complex was analyzed by molecular dynamics simulation, while that of BAFF-tabalumab complex was analyzed by protein-protein docking following the molecular dynamics simulation. Both belimumab and tabalumab were bound with BAFF at the same hydrophobic center to which the natural receptors of BAFF bind as well. Belimumab heavy chain components I51, F54, K58, D100, D101, L102, L103, and P105 and R27, Y30, K49, and S65 of belimumab light chain contribute to the BAFF-belimumab interaction mainly via hydrogen bonds, salt bridges, and hydrophobic interactions. More importantly, belimumab could bind to L83 of BAFF and produce steric hindrance with the adjacent BAFF trimers, while tabalumab could not. Therefore, our results indicated that belimumab has a better clinical outcome compared with tabalumab mainly because belimumab could bind to L83 of BAFF and interfere the formation of a BAFF 60-mer, besides mediating inhibition of the interaction of BAFF with its receptors.
Collapse
|
8
|
Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals (Basel) 2022; 15:ph15080936. [PMID: 36015084 PMCID: PMC9413112 DOI: 10.3390/ph15080936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
Systemic sclerosis and systemic lupus erythematosus represent two distinct autoimmune diseases belonging to the group of connective tissue disorders. Despite the great progress in the basic science, this progress has not been translated to the development of novel therapeutic approaches that can radically change the face of these diseases. The discovery of JAK kinases, which are tyrosine kinases coupled with cytokine receptors, may open a new chapter in the treatment of so far untreatable diseases. Small synthetic compounds that can block Janus kinases and interact directly with cytokine signalling may provide therapeutic potential in these diseases. In this review, we discuss the therapeutic potential of Jak kinases in light of the cytokine network that JAK kinases are able to interact with. We also provide the theoretical background for the rationale of blocking cytokines with specific JAK inhibitors.
Collapse
|
9
|
Armandi A, Actis GC, Ribaldone DG. Autoimmunity of the liver. TRANSLATIONAL AUTOIMMUNITY 2022:309-331. [DOI: 10.1016/b978-0-12-824466-1.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Hesse J, Siekierka-Harreis M, Steckel B, Alter C, Schallehn M, Honke N, Schnieringer ML, Wippich M, Braband R, Schneider M, Surowy H, Wieczorek D, Schrader J, Pongratz G. Profound inhibition of CD73-dependent formation of anti-inflammatory adenosine in B cells of SLE patients. EBioMedicine 2021; 73:103616. [PMID: 34666225 PMCID: PMC8524755 DOI: 10.1016/j.ebiom.2021.103616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that leads to a breakdown of tolerance to self-antigens resulting in inflammation and organ damage. The anti-inflammatory activity of CD73-derived adenosine is well documented, however, its role in SLE pathogenesis is unknown. METHODS Human peripheral blood immune cells were obtained from adult SLE patients (SLE) and healthy controls (HC). Expression and activity of purinergic ectoenzymes were assessed by qRT-PCR, flow cytometry and HPLC. Genes encoding purinergic ectoenzymes in SLE patients were analysed with targeted DNA sequencing. FINDINGS Among circulating immune cells (both in HC and SLE), CD73 was most highly expressed on B cells, which was mirrored by high enzymatic activity only in HC. CD73 protein molecular weight was unchanged in SLE, however, the enzymatic activity of CD73 on SLE B cells was almost fully abolished. Accordingly, AMP accumulated in cultured SLE B cells. A similar discrepancy between protein expression and enzymatic activity was observed for NAD-degrading CD38 on SLE B cells. No differences were found in the rate of extracellular ATP degradation and expression of CD39, CD203a/c, and CD157. DNA sequencing identified no coding variants in CD73 in SLE patients. INTERPRETATION We describe a new pathomechanism for SLE, by which inactivation of CD73 on B cells produces less anti-inflammatory adenosine, resulting in immune cell activation. CD73 inactivation was not due to genetic variation but may be related to posttranslational modification. FUNDING The German Research Council, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Hiller Research Foundation, and Cardiovascular Research Institute Duesseldorf.
Collapse
Affiliation(s)
- Julia Hesse
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Magdalena Siekierka-Harreis
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Merle Schallehn
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Nadine Honke
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Marie-Laure Schnieringer
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Madita Wippich
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Rebekka Braband
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Matthias Schneider
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Georg Pongratz
- Policlinic of Rheumatology & Hiller Research Unit, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
12
|
Retamozo S, Sisó-Almirall A, Flores-Chávez A, Ramos-Casals M, Brito-Zerón P. An update of targeted therapeutic options for primary Sjögren syndrome: current status and future development. Expert Opin Pharmacother 2021; 22:2359-2371. [PMID: 34323636 DOI: 10.1080/14656566.2021.1951224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Primary Sjögren syndrome (pSS) is a systemic autoimmune disease that may affect 3 in 1,000 people within the general population. The therapeutic scenario is complex, and no therapy has proved to be able to modify the natural course of the disease, nor to prevent the most severe systemic complications.Areas covered: Recently, the EULAR 2020 Recommendations for pSS have underlined the low level of evidence supporting efficacious therapeutic approaches, lacking a definition of specific treatment targets and being far from the 'disease modification' concept that is frequently used in other diseases. Herein, the authors review the status of current targeted therapies and provide the reader with their expert opinion.Expert opinion: The progress in discovering novel treatments for pSS seem to be focused on searching new biological therapies as highly-selective drugs that can be effective without the adverse effects related to the wide, nonspecific immunosuppression induced by the drugs currently used. Most likely, the more disruptive therapeutic approach in pSS that could be seen in a few years is the use of combination strategies targeting different etiopathogenic pathways.
Collapse
Affiliation(s)
- Soledad Retamozo
- Sjogren Syndrome Research Group (AGAUR), Department of Autoinmune Diseases, ICMiD, Hospital Clinic, Barcelona, Spain.,Rheumatology Department, Hospital Universitari Parc Taulí, Sabadell, Barcelona, Spain
| | - Antoni Sisó-Almirall
- Primary Care Centre Les Corts, Consorci d'Atenció Primària De Salut Barcelona Esquerra (CAPSBE), Barcelona, Spain.,Primary Healthcare Transversal Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Manuel Ramos-Casals
- Sjogren Syndrome Research Group (AGAUR), Department of Autoinmune Diseases, ICMiD, Hospital Clinic, Barcelona, Spain.,Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Barcelona, Spain
| | - Pilar Brito-Zerón
- Laboratory of Autoimmune Diseases Josep Font, IDIBAPS-CELLEX, Barcelona, Spain.,Autoimmune Diseases Unit, Department of Medicine, Hospital CIMA-Sanitas, Barcelona, Spain
| |
Collapse
|
13
|
Eslami M, Schneider P. Function, occurrence and inhibition of different forms of BAFF. Curr Opin Immunol 2021; 71:75-80. [PMID: 34182216 DOI: 10.1016/j.coi.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 01/27/2023]
Abstract
B cell activating factor (BAFF or BLyS), an important cytokine for B cell survival and humoral immune responses, is targeted in the clinic for the treatment of systemic lupus erythematosus. This review focuses on the structure, function and inhibition profiles of membrane-bound BAFF, soluble BAFF 3-mer and soluble BAFF 60-mer, all of which have distinct properties. BAFF contains a loop region not required for receptor binding but essential for receptor activation via promotion of BAFF-to-BAFF contacts. This loop region additionally allows formation of BAFF 60-mer, in which epitopes of the BAFF inhibitor belimumab are inaccessible. If 60-mer forms in humans, it is predicted to be short-lived and to act locally because adult serum contains a BAFF 60-mer dissociating activity. Cord blood contains elevated levels of BAFF, part of which displays attributes of 60-mer, suggesting a role for this form of BAFF in the development of foetal or neonate B cells.
Collapse
Affiliation(s)
- Mahya Eslami
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
14
|
Guiteras J, Ripoll É, Bolaños N, De Ramon L, Fontova P, Lloberas N, Cruzado JM, Aràn JM, Aviñó A, Eritja R, Gomà M, Taco R, Grinyó JM, Torras J. The gene silencing of IRF5 and BLYSS effectively modulates the outcome of experimental lupus nephritis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:807-821. [PMID: 33996261 PMCID: PMC8105598 DOI: 10.1016/j.omtn.2021.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is a highly complex and heterogeneous autoimmune disease mostly mediated by B cells. It is characterized by circulating self-reactive antibodies that deposit and form immune complexes in kidney, leading to irreparable tissue damage and resulting in lupus nephritis. In a New Zealand Black X New Zealand White F1 mouse model, we tested two different small interfering RNA (siRNA) silencing treatments against interferon regulatory factor 5 (IRF5) and B cell-activating factor (BLYSS) expression and their combination in a second set of animals. The administration of these two siRNAs separately prevented the progression of proteinuria and albuminuria at similar levels to that in cyclophosphamide animals. These treatments effectively resulted in a reduction of serum anti-double-stranded DNA (dsDNA) antibodies and histopathological renal score compared with non-treated group. Treated groups showed macrophage, T cell, and B cell infiltrate reduction in renal tissue. Moreover, kidney gene expression analysis revealed that siRNA treatments modulated very few pathways in contrast to cyclophosphamide, despite showing similar therapeutic effects. Additionally, the combined therapy tested in a second set of animals, in which the disease appeared more virulent, exhibited better results than monotherapies in the disease progression, delaying the disease onset and ameliorating the disease outcome. Herein, we provide the potential therapeutic effect of both selective IRF5 and BLYSS silencing as an effective and potential treatment, particularly in early phases of the disease.
Collapse
Affiliation(s)
- Jordi Guiteras
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Élia Ripoll
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Bolaños
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Laura De Ramon
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Pere Fontova
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Lloberas
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Cruzado
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Aràn
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, 08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, 08034 Barcelona, Spain
| | - Montse Gomà
- Pathology Department, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Rosario Taco
- Pathology Department, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Grinyó
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juan Torras
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
15
|
Smets I, Prezzemolo T, Imbrechts M, Mallants K, Mitera T, Humblet-Baron S, Dubois B, Matthys P, Liston A, Goris A. Treatment-Induced BAFF Expression and B Cell Biology in Multiple Sclerosis. Front Immunol 2021; 12:676619. [PMID: 34122439 PMCID: PMC8187869 DOI: 10.3389/fimmu.2021.676619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 01/12/2023] Open
Abstract
Although fingolimod and interferon-β are two mechanistically different multiple sclerosis (MS) treatments, they both induce B cell activating factor (BAFF) and shift the B cell pool towards a regulatory phenotype. However, whether there is a shared mechanism between both treatments in how they influence the B cell compartment remains elusive. In this study, we collected a cross-sectional study population of 112 MS patients (41 untreated, 42 interferon-β, 29 fingolimod) and determined B cell subsets, cell-surface and RNA expression of BAFF-receptor (BAFF-R) and transmembrane activator and cyclophilin ligand interactor (TACI) as well as plasma and/or RNA levels of BAFF, BAFF splice forms and interleukin-10 (IL-10) and -35 (IL-35). We added an in vitro B cell culture with four stimulus conditions (Medium, CpG, BAFF and CpG+BAFF) for untreated and interferon-β treated patients including measurement of intracellular IL-10 levels. Our flow experiments showed that interferon-β and fingolimod induced BAFF protein and mRNA expression (P ≤ 3.15 x 10-4) without disproportional change in the antagonizing splice form. Protein BAFF correlated with an increase in transitional B cells (P = 5.70 x 10-6), decrease in switched B cells (P = 3.29 x 10-4), and reduction in B cell-surface BAFF-R expression (P = 2.70 x 10-10), both on TACI-positive and -negative cells. TACI and BAFF-R RNA levels remained unaltered. RNA, plasma and in vitro experiments demonstrated that BAFF was not associated with increased IL-10 and IL-35 levels. In conclusion, treatment-induced BAFF correlates with a shift towards transitional B cells which are enriched for cells with an immunoregulatory function. However, BAFF does not directly influence the expression of the immunoregulatory cytokines IL-10 and IL-35. Furthermore, the post-translational mechanism of BAFF-induced BAFF-R cell surface loss was TACI-independent. These observations put the failure of pharmaceutical anti-BAFF strategies in perspective and provide insights for targeted B cell therapies.
Collapse
Affiliation(s)
- Ide Smets
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Maya Imbrechts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Klara Mallants
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tania Mitera
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Stéphanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium
| | - Bénédicte Dubois
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory for Adaptive Immunology, KU Leuven, Belgium.,VIB Center for Brain & Disease Research, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - An Goris
- Department of Neurosciences, Laboratory for Neuroimmunology, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Singh RP, Hahn BH, Bischoff DS. Effects of Peptide-Induced Immune Tolerance on Murine Lupus. Front Immunol 2021; 12:662901. [PMID: 34093553 PMCID: PMC8171184 DOI: 10.3389/fimmu.2021.662901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of autoimmunity and the molecular mechanisms by which different immune cells, including T cells, polymorphonuclear leukocytes (PMN-granulocytes), and B cells suppress autoimmune diseases is complex. We have shown previously that BWF1 lupus mice are protected from autoimmunity after i.v. injection or oral administration of tolerogenic doses of pCons, an artificial synthetic peptide based on sequences containing MHC class I and MHC class II determinants in the VH region of a J558-encoded BWF1 anti-DNA Ab. Several T cell subsets can transfer this tolerance. In this study, we determined the potential roles of granulocytes, B cells and regulatory T cells altered by pCons treatment in the BWF1 (NZB/NZW) mouse model of lupus. Immunophenotyping studies indicated that pCons treatment of BWF1 mice significantly increased CD4+FoxP3+ T cells, reduced the percent of B cells expressing CD19+CD5+ but increased the percent of CD19+CD1d+ regulatory B cells and increased the ability of the whole B cell population to suppress IgG anti-DNA production in vitro. pCons treatment significantly decreased the expression of CTLA-4 (cytotoxic T-lymphocyte-associated protein-4) in CD8+ T cells. In addition, peptide administration modified granulocytes so they became suppressive. We co-cultured sorted naïve B cells from mice making anti-DNA Ab (supported by addition of sorted naive CD4+ and CD8+ T cells from young auto-antibody-negative BWF1 mice) with sorted B cells or granulocytes from tolerized mice. Both tolerized granulocytes and tolerized B cells significantly suppressed the production of anti-DNA in vitro. In granulocytes from tolerized mice compared to saline-treated littermate controls, real-time PCR analysis indicated that expression of interferon-induced TNFAIP2 increased more than 2-fold while Ptdss2 and GATA1 mRNA were up-regulated more than 10-fold. In contrast, expression of these genes was significantly down-regulated in tolerized B cells. Further, another IFN-induced protein, Bcl2, was reduced in tolerized B cells as determined by Western blot analyses. In contrast, expression of FoxP3 was significantly increased in tolerized B cells. Together, these data suggest that B cells and granulocytes are altered toward suppressive functions by in vivo tolerization of BWF1 mice with pCons and it is possible these cell types participate in the clinical benefits seen in vivo.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Investigating the Role of BAFF and Its Receptors in Renal Transplant Recipients with Chronic Antibody-Mediated Rejection. J Immunol Res 2021; 2021:6654992. [PMID: 33748289 PMCID: PMC7959970 DOI: 10.1155/2021/6654992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background Kidney transplantation is the best treatment option for end stage renal disease (ESRD), but graft rejection is still a big obstacle that occurs in spite of immunosuppressive therapy. B cells are considered as the major reason for renal graft rejection because of antibody production. Due to their roles in B cell function, we intended to evaluate the B cell activating factor (BAFF) and its receptors including BAFF receptor (BAFF-R), B cell maturation antigen (BCMA), and transmembrane activator and cyclophilin ligand interactor (TACI) in renal transplant patients. Method The study included 40 kidney allograft patients with cAMR, 40 stable kidney allograft patients, and 8 healthy volunteers with normal kidney function. The percentage and absolute number of CD19+ B cells were analyzed by flow cytometry, the serum level of BAFF was analyzed by ELISA, and mRNA expressions of BAFF and BAFF receptors (BAFF-R, BCMA, and TACI) were measured using quantitative real-time PCR. Results The percentage and the absolute number of B cells decreased significantly in stable and cAMR patients compared to healthy individuals. The serum level and gene expression of BAFF, as well as the mRNA level of BCMA, were increased significantly in both cAMR and stable patients compared to healthy volunteers. There was an overexpression of TACI mRNA in cAMR patients compared to stable patients. Conclusions Both soluble protein and mRNA transcript of BAFF increased in transplant recipients. However, BAFF neither at the serum level nor at the mRNA transcript level cannot be a good biomarker for the prediction of cAMR. In addition, expression of TACI, compared to other receptors of BAFF, confers a potential to be used in distinguishing cAMR and stable kidney transplant patients.
Collapse
|
18
|
Chen Q, Lu X, Zhang X. Noncanonical NF-κB Signaling Pathway in Liver Diseases. J Clin Transl Hepatol 2021; 9:81-89. [PMID: 33604258 PMCID: PMC7868705 DOI: 10.14218/jcth.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The noncanonical NF-κB signaling pathway is an important branch of NF-κB signaling. It is involved in regulating multiple important biological processes, including inflammation and host immune response. A central adaptor protein of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which activates the downstream kinase IKKα to process p100 to p52, thereby forming the RelB/p52 heterodimer to initiate the expression of target genes. Currently, many specific inhibitors and monoclonal antibodies targeting or triggering this pathway are being developed and tested for various diseases, including cancers, autoimmune diseases, and virus infection. Given that aberrant activation of the noncanonical NF-κB pathway is frequently observed in various liver diseases, targeting this pathway may be a promising therapeutic strategy to alleviate liver inflammation. Moreover, activation of this pathway may contribute to the antiviral immune response and promote the clearance of persistent hepatotropic virus infection. Here, we review the role of the noncanonical NF-κB pathway in the occurrence and development of different liver diseases, and discuss the potency and application of modulating the noncanonical NF-κB pathway for treatment of these liver diseases.
Collapse
Affiliation(s)
- Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
- Hepatology Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Correspondence to: Xiaoyong Zhang, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, Guangdong 510515, China. Tel: +86-20-62787830, E-mail:
| |
Collapse
|
19
|
Guo R, Wang W, Yu L, Zhu Z, Tu P. Different regulatory effects of CD40 ligand and B-cell activating factor on the function of B cells. Int Immunopharmacol 2021; 91:107337. [PMID: 33401206 DOI: 10.1016/j.intimp.2020.107337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
CD40 ligand (CD40L) and B-cell activating factor (BAFF) play important roles in the function of B cells. However, the difference of their regulatory effects remains obscure. In this study, we used anti-CD40 to imitate CD40L and investigated the different regulatory effects of CD40L and BAFF on the function of B cells. In the functional analyses, both anti-CD40 and BAFF significantly enhanced the survival and differentiation of B cells, and slightly increased the activation and proliferation. However, in the transcriptome analysis, anti-CD40 and BAFF exerted very different regulation on the gene expression profile of B cells. Anti-CD40 upregulated the expression of genes related to the adaptive immune function of B cells, but BAFF enhanced the genes associated with the innate immune function. Furthermore, the effect analysis of the combination of anti-CD40 or BAFF with anti-IgM also demonstrated that anti-CD40 could cooperate with anti-IgM to promote the proliferation of B cells, but BAFF could not do it. The mechanism study revealed that the different effects of anti-CD40 and BAFF on B cells were resulting from the different modulation on NF-кB, ERK1/2, and PI3K-AKT signaling pathways. Collectively, the results suggest that CD40L mainly promotes adaptive immune function of B cells, but BAFF primarily enhances innate immune function.
Collapse
Affiliation(s)
- Ran Guo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxuan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lanzhi Yu
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, China
| | - Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
20
|
Morgan D, Garg M, Tergaonkar V, Tan SY, Sethi G. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1874:188449. [PMID: 33058996 DOI: 10.1016/j.bbcan.2020.188449] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
The understanding of the impact of the non-canonical NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathway in several human diseases including autoimmune, inflammatory and cancers has been on the rise. This pathway induces the expression of several important genes involved in diverse biological processes. Though progress has been made in understanding the activation, regulation and biological functions of the non-canonical NF-κB signaling mechanism, no specific drug has been approved to target NF-κB inducing kinase (NIK), the key signaling molecule in this pathway. The inhibition of NIK can serve as a potential therapeutic strategy for various ailments, especially for the treatment of different types of human cancers. There are other targetable downstream molecules in this pathway as well. This review highlights the possible role of the non-canonical NF-κB pathway in normal physiology as well as in different cancers and discusses about various pharmacological strategies to modulate the activation of this pathway.
Collapse
Affiliation(s)
- Dhakshayini Morgan
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, 119 074, Singapore
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, Noida 201313, India
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, 119 074, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| | - Soo Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, 119 074, Singapore; Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Dr, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 600, Singapore.
| |
Collapse
|
21
|
Owen KA, Price A, Ainsworth H, Aidukaitis BN, Bachali P, Catalina MD, Dittman JM, Howard TD, Kingsmore KM, Labonte AC, Marion MC, Robl RD, Zimmerman KD, Langefeld CD, Grammer AC, Lipsky PE. Analysis of Trans-Ancestral SLE Risk Loci Identifies Unique Biologic Networks and Drug Targets in African and European Ancestries. Am J Hum Genet 2020; 107:864-881. [PMID: 33031749 PMCID: PMC7675009 DOI: 10.1016/j.ajhg.2020.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of African ancestry (AA) experience the disease more severely and with an increased co-morbidity burden compared to European ancestry (EA) populations. We hypothesize that the disparities in disease prevalence, activity, and response to standard medications between AA and EA populations is partially conferred by genomic influences on biological pathways. To address this, we applied a comprehensive approach to identify all genes predicted from SNP-associated risk loci detected with the Immunochip. By combining genes predicted via eQTL analysis, as well as those predicted from base-pair changes in intergenic enhancer sites, coding-region variants, and SNP-gene proximity, we were able to identify 1,731 potential ancestry-specific and trans-ancestry genetic drivers of SLE. Gene associations were linked to upstream and downstream regulators using connectivity mapping, and predicted biological pathways were mined for candidate drug targets. Examination of trans-ancestral pathways reflect the well-defined role for interferons in SLE and revealed pathways associated with tissue repair and remodeling. EA-dominant genetic drivers were more often associated with innate immune and myeloid cell function pathways, whereas AA-dominant pathways mirror clinical findings in AA subjects, suggesting disease progression is driven by aberrant B cell activity accompanied by ER stress and metabolic dysfunction. Finally, potential ancestry-specific and non-specific drug candidates were identified. The integration of all SLE SNP-predicted genes into functional pathways revealed critical molecular pathways representative of each population, underscoring the influence of ancestry on disease mechanism and also providing key insight for therapeutic selection.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Black People
- Bortezomib/therapeutic use
- DNA, Intergenic/genetics
- DNA, Intergenic/immunology
- Enhancer Elements, Genetic
- Gene Expression
- Gene Ontology
- Gene Regulatory Networks
- Genetic Predisposition to Disease
- Genome, Human
- Genome-Wide Association Study
- Heterocyclic Compounds/therapeutic use
- Humans
- Interferons/genetics
- Interferons/immunology
- Isoquinolines/therapeutic use
- Lactams
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/ethnology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Molecular Sequence Annotation
- Polymorphism, Single Nucleotide
- Protein Array Analysis
- Quantitative Trait Loci
- Quantitative Trait, Heritable
- White People
Collapse
Affiliation(s)
| | - Andrew Price
- AMPEL BioSolutions LLC, Charlottesville, VA 22902, USA
| | | | | | | | | | | | | | | | | | | | - Robert D Robl
- AMPEL BioSolutions LLC, Charlottesville, VA 22902, USA
| | - Kip D Zimmerman
- Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
22
|
Lupus low disease activity (SLE) in patients treated with belimumab: a single-center real-life experience (2016-2019). Clin Rheumatol 2020; 40:923-927. [PMID: 32797364 DOI: 10.1007/s10067-020-05315-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/23/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023]
Abstract
INTRODUCTION We have been conducting an evaluation of innovative therapies in patients with SLE during the past 15 years. We combine the results observed on extension studies from four different trials in patients receiving either intravenous or subcutaneous belimumab, and evaluated, in Caucasian and Black Brazilian patients. METHODS Seventy-four patients were part of the study. The Lupus Low Disease Activity State (LLDAS) shown to be an available tool to detect a response in trials was used in this study and statistical comparisons between the different result groups were determined. The period of evaluation was from 12 to 48 months. RESULTS Seventy-four patients completed the initial study. Four refused to continue the extension evaluation. Seven belonged to the black group (10%); sixty-three were Caucasian (90%). One patient was discontinued due to pregnancy. Nine received a subcutaneous presentation (12.8%). In the subgroup analysis, one patient in the black group had flare (14.2%); five in the intravenous administration had severe flares (8.1%) and were discontinued. Ten had flares adjusted with steroids (eight articular or skin reactivation) and two with renal disease. Of the five severe flares, two required hospitalization. The mean time duration to achieve LLDAS was 6 months. Twenty-seven achieved a steroid-free status and the remaining two patients on 2.5 mg and seventeen were stable on daily 5.0 mg of prednisone. CONCLUSIONS Using the LLDAS, it was possible to show that the majority of patients receiving belimumab for prolonged periods go into remission steroid-free or in low disease activity in association with the corresponding immunosuppressive treatment. Key Points • Prolonged real-life evaluation confirms the efficacy and steroid-sparing of Belimumab in SLE patients with active disease.
Collapse
|
23
|
Kampa M, Notas G, Stathopoulos EN, Tsapis A, Castanas E. The TNFSF Members APRIL and BAFF and Their Receptors TACI, BCMA, and BAFFR in Oncology, With a Special Focus in Breast Cancer. Front Oncol 2020; 10:827. [PMID: 32612943 PMCID: PMC7308424 DOI: 10.3389/fonc.2020.00827] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor (TNF) superfamily consists of 19 ligands and 29 receptors and is related to multiple cellular events from proliferation and differentiation to apoptosis and tumor reduction. In this review, we overview the whole system, and we focus on A proliferation-inducing ligand (APRIL, TNFSF13) and B cell-activating factor (BAFF, TNFSF13B) and their receptors transmembrane activator and Ca2+ modulator (CAML) interactor (TACI, TNFRSF13B), B cell maturation antigen (BCMA, TNFRSF17), and BAFF receptor (BAFFR, TNFRSF13C). We explore their role in cancer and novel biological therapies introduced for multiple myeloma and further focus on breast cancer, in which the modulation of this system seems to be of potential interest, as a novel therapeutic target. Finally, we discuss some precautions which should be taken into consideration, while targeting the APRIL–BAFF system.
Collapse
Affiliation(s)
- Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | | | - Andreas Tsapis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklon, Greece
| |
Collapse
|
24
|
Arvaniti P, Giannoulis G, Gabeta S, Zachou K, Koukoulis GK, Dalekos GN. Belimumab is a promising third-line treatment option for refractory autoimmune hepatitis. JHEP Rep 2020; 2:100123. [PMID: 32671332 PMCID: PMC7340979 DOI: 10.1016/j.jhepr.2020.100123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background & Aims Autoimmune hepatitis (AIH) is a disease of unknown aetiology with a favourable response to immunosuppression. However, in the clinic, it appears that <50% of patients achieve complete response on standard treatment. Serum B cell-activating factor (BAFF) levels are elevated in patients with AIH and are likely to contribute to disease pathogenesis. Given that belimumab, a BAFF inhibitor, has been shown to be effective in other autoimmune diseases, we investigated its use as a third-line add-on treatment option in patients with advanced AIH who did not respond to conventional treatment. Methods Herein, we report for the first time two patients, a 27-year-old female and a 58-year-old male, both with AIH-related compensated cirrhosis at diagnosis, who were refractory to standard immunosuppressive therapies and received add-on third-line therapy with belimumab. Results Both patients achieved a complete response and remained in remission while receiving low-dose corticosteroids. No adverse events related to belimumab and/or disease decompensation were observed. Conclusions These preliminary findings indicate belimumab as a promising treatment option for patients with AIH and refractory and advanced liver-related fibrosis. Lay summary A small proportion of patients with autoimmune hepatitis (AIH) are refractory to standard treatments; these patients bear the highest probability of developing decompensated cirrhosis and hepatocellular carcinoma because third-line treatment options are not well established. In this case study, we showed that third-line add-on therapy with belimumab, a B cell-activating factor inhibitor, could be an alternative and promising treatment option in patients with advanced AIH who did not respond to conventional treatment.
Belimumab is a B cell-activating factor inhibitor that has been proposed for the treatment of autoimmune hepatitis. In 2 patients with autoimmune hepatitis, belimumab led to complete response and remission. No adverse events related to belimumab and/or disease decompensation were observed.
Collapse
Key Words
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- ANA, antinuclear antibody
- AST, aminotransferase
- AZA, azathioprine
- Autoimmune hepatitis
- B cells
- BAFF
- BAFF, B cell-activating factor
- Belimumab
- CR, complete response
- DCs, dendritic cells
- EBV, Epstein–Barr virus
- GGT, gamma-glutamyl transferase
- LSM, liver stiffness measurements
- MMF, mycophenolate mofetil
- SLE, systemic lupus erythematosus
- TNF, tumour necrosis factor
- Treatment
- Tregs, regulatory T cells
- ULN, upper limit of normal
Collapse
Affiliation(s)
- Pinelopi Arvaniti
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece
| | - George Giannoulis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece
| | - Stella Gabeta
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece.,Institute of Internal Medicine and Hepatology, 41447 Larissa, Greece
| | - George K Koukoulis
- Department of Pathology, Medical School, University of Thessaly, 41110 Larissa, Greece
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece.,Institute of Internal Medicine and Hepatology, 41447 Larissa, Greece
| |
Collapse
|
25
|
Taylor PN, Zhang L, Lee RWJ, Muller I, Ezra DG, Dayan CM, Kahaly GJ, Ludgate M. New insights into the pathogenesis and nonsurgical management of Graves orbitopathy. Nat Rev Endocrinol 2020; 16:104-116. [PMID: 31889140 DOI: 10.1038/s41574-019-0305-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Graves orbitopathy, also known as thyroid eye disease or thyroid-associated orbitopathy, is visually disabling, cosmetically disfiguring and has a substantial negative impact on a patient's quality of life. There is increasing awareness of the need for early diagnosis and rapid specialist input from endocrinologists and ophthalmologists. Glucocorticoids are the mainstay of treatment; however, recurrence occurs frequently once these are withdrawn. Furthermore, in >60% of cases, normal orbital anatomy is not restored, and skilled rehabilitative surgery is required. Clinical trials have shown that considerable benefit can be derived from the addition of antiproliferative agents (such as mycophenolate or azathioprine) in preventing deterioration after steroid cessation. In addition, targeted biologic therapies have shown promise, including teprotumumab, which reduces proptosis, rituximab (anti-CD20), which reduces inflammation, and tocilizumab, which potentially benefits both of these parameters. Other strategies such as orbital radiotherapy have had their widespread role in combination therapy called into question. The pathophysiology of Graves orbitopathy has also been revised with identification of new potential therapeutic targets. In this Review we provide an up-to-date overview of the field, outline the optimal management of Graves orbitopathy and summarize the research developments in this area to highlight future research questions and direct future clinical trials.
Collapse
Affiliation(s)
- Peter N Taylor
- Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK.
| | - Lei Zhang
- Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Richard W J Lee
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- University of Bristol, Bristol, UK
| | - Ilaria Muller
- Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
- Fondazione IRRCS Ca' Granda Ospedale Maggiore Policinico, Department of Endocrinology, Milan, Italy
| | - Daniel G Ezra
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Colin M Dayan
- Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - George J Kahaly
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Marian Ludgate
- Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
26
|
Zhang H, Wang S, Su X, Fu Q, Li J, Wang J, Deng R, Wu C, Huang Q, Liu L, Wang C. The role of soluble B cell-activating factor in further stratifying the risk of antibody-mediated rejection post-renal transplant: A meta-analysis. Int Immunopharmacol 2019; 79:106059. [PMID: 31865240 DOI: 10.1016/j.intimp.2019.106059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND We conducted a meta-analysis to evaluate the predictive value of serum soluble B cell-activating factor (sBAFF) for antibody-mediated rejection (ABMR), which remains controversial. METHODS Systematic literature search was performed in PubMed, EMBASE, Scopus, Cochrane Library, Web of Science and three Chinese databases. Studies of any relevant design were included. Random and fixed-effects meta-analytical models were used. Study quality, publication bias, and heterogeneity were assessed. This study was registered with PROSPERO (CRD42019109198). RESULTS Nine observational studies were included in the meta-analysis, including 1302 cases (median NOS quality score = 8, range 6-8). The incidence of ABMR was significantly higher in the high sBAFF group than in the low sBAFF level group (Risk ratio [RR] 2.04 [95% CI 1.52-2.74], I2 = 26%, P < 0.01, N = 1014). The subgroup analysis showed that regardless of pre-transplant donor-specific antibody (DSA) status, the high sBAFF level group still had a significantly higher incidence of ABMR. sBAFF was not associated with the risk of TCMR. The sBAFF level was significantly higher in the anti-HLA-antibody (+) group than in anti-HLA-antibody (-) patients before or after kidney transplantation (Standardized mean difference [SMD] 0.43 [0.29-0.56], P < 0.01, I2 = 34%, N = 1001). CONCLUSION sBAFF is a promising biomarker to further stratify the risk of ABMR post-renal transplant.
Collapse
Affiliation(s)
- Huanxi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Wang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Su
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiali Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingshan Huang
- Medical Information Institute, Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China.
| | - Changxi Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China.
| |
Collapse
|
27
|
Lee WS, Amengual O. B cells targeting therapy in the management of systemic lupus erythematosus. Immunol Med 2019; 43:16-35. [PMID: 32107989 DOI: 10.1080/25785826.2019.1698929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease which affects the majority of organs and systems. Traditional therapies do not lead to complete remission of disease but only relieve symptoms and inflammation. B cells are the most important effector cell types in the pathogenesis of SLE. Therefore, therapies targeting B cells and their related cytokines are a very important milestone for SLE treatment. Several biologics that modulate B cells, either depleting B cells or blocking B cell functions, have been developed and evaluated in clinical trials. Belimumab, a fully humanized monoclonal antibody that specifically binds B cells activating factor (BAFF), was the first of these agents approved for SLE treatment. In this review, we explore the currently available evidence in B cell targeted therapies in SLE including agents that target B cell surface antigens (CD19, CD20, CD22), B cell survival factors (BAFF and a proliferation-inducing ligand, APRIL), cytokines (interleukin-1 and type 1 interferons) and co-stimulatory molecules (CD40 ligand). We highlighted the mechanisms of action and the individual characteristics of these biologics, and present an update on the clinical trials that have evaluated their efficacy and safety. Finally, we describe some of the emerging and promising therapies for SLE treatment.
Collapse
Affiliation(s)
- Wen Shi Lee
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Olga Amengual
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Abo-Elfadl MT, Gamal-Eldeen AM, Ismail MF, Shahin NN. Silencing of the cytokine receptor TNFRSF13B: A new therapeutic target for triple-negative breast cancer. Cytokine 2019; 125:154790. [PMID: 31400636 DOI: 10.1016/j.cyto.2019.154790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND TNFRSF13B, TACI, is a member of the TNF receptor superfamily; it plays a key role in cancer cell proliferation and progression. METHOD Influence of silencing of human cytokine receptors on cell viability was screened by Luminescent Cell Viability Assay, after transfection of the siRNA library to find the maximum cell death superhits in both triple-negative MDA-MB-231 and double-positive MCF7 breast cells. The mode of cell death was investigated by dual DNA fluorescence staining. The expression of mRNAs of TACI, BAFF, BAFF-R, and APRIL was explored by qPCR. Immunocytofluorescence analysis was used to evaluate changes in TACI, Bcl-2, TNFR2, cyclin-D2, and PCNA. NF-kB p65, cell cycle, and necrosis/apoptosis (late and early) were analyzed by flow cytometry. RESULTS TACI is the most potent cytotoxic superhit resulted from high-throughput screening of the siRNA library, in both types of cells. Our findings indicated that silencing receptor TACI in both types of breast cancer cells led to significant cell death, after different intervals from siRNA transfection. Cell death mediators (TNFR2, Bcl-2, and NF-κB) were significantly decreased after TACI silencing. The key factors for cell division (Cyclin-D2 and PCNA) were significantly increased in silenced cells of both types but the cell cycle was arrested before the completion of mitosis. Expression of BAFF, BAFF-R and APRIL mRNA in TACI-silenced cells showed significant upregulation in MDA-MB-231 cells, while only BAFF-R and APRIL showed significant downregulation in MCF7 cells. CONCLUSION TACI silencing can be a new and promising therapeutic target for mesenchymal-stem like triple-negative breast cancer subtype.
Collapse
Affiliation(s)
- Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, 12622 Cairo, Egypt; Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Amira M Gamal-Eldeen
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, 12622 Cairo, Egypt; Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt; Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, Al Mutamarat Rd, Al Mathnah, At Taif 26521, Saudi Arabia.
| | - Manal F Ismail
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nancy N Shahin
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Didona D, Maglie R, Eming R, Hertl M. Pemphigus: Current and Future Therapeutic Strategies. Front Immunol 2019; 10:1418. [PMID: 31293582 PMCID: PMC6603181 DOI: 10.3389/fimmu.2019.01418] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
Pemphigus encompasses a heterogeneous group of autoimmune blistering diseases, which affect both mucous membranes and the skin. The disease usually runs a chronic-relapsing course, with a potentially devastating impact on the patients' quality of life. Pemphigus pathogenesis is related to IgG autoantibodies targeting various adhesion molecules in the epidermis, including desmoglein (Dsg) 1 and 3, major components of desmosomes. The pathogenic relevance of such autoantibodies has been largely demonstrated experimentally. IgG autoantibody binding to Dsg results in loss of epidermal keratinocyte adhesion, a phenomenon referred to as acantholysis. This in turn causes intra-epidermal blistering and the clinical appearance of flaccid blisters and erosions at involved sites. Since the advent of glucocorticoids, the overall prognosis of pemphigus has largely improved. However, mortality persists elevated, since long-term use of high dose corticosteroids and adjuvant steroid-sparing immunosuppressants portend a high risk of serious adverse events, especially infections. Recently, rituximab, a chimeric anti CD20 monoclonal antibody which induces B-cell depletion, has been shown to improve patients' survival, as early rituximab use results in higher disease remission rates, long term clinical response and faster prednisone tapering compared to conventional immunosuppressive therapies, leading to its approval as a first line therapy in pemphigus. Other anti B-cell therapies targeting B-cell receptor or downstream molecules are currently tried in clinical studies. More intriguingly, a preliminary study in a preclinical mouse model of pemphigus has shown promise regarding future therapeutic application of Chimeric Autoantibody Receptor T-cells engineered using Dsg domains to selectively target autoreactive B-cells. Conversely, previous studies from our group have demonstrated that B-cell depletion in pemphigus resulted in secondary impairment of T-cell function; this may account for the observed long-term remission following B-cell recovery in rituximab treated patients. Likewise, our data support the critical role of Dsg-specific T-cell clones in orchestrating the inflammatory response and B-cell activation in pemphigus. Monitoring autoreactive T-cells in patients may indeed provide further information on the role of these cells, and would be the starting point for designating therapies aimed at restoring the lost immune tolerance against Dsg. The present review focuses on current advances, unmet challenges and future perspectives of pemphigus management.
Collapse
Affiliation(s)
- Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Roberto Maglie
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany.,Surgery and Translational Medicine, Section of Dermatology, University of Florence, Florence, Italy.,Section of Dermatology, Departement of Health Sciences, University of Florence, Florence, Italy
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| |
Collapse
|
30
|
Chiche LY. Treize raisons pour ne pas cibler le lymphocyte B dans le traitement du lupus érythémateux systémique. Rev Med Interne 2019; 40:207-210. [DOI: 10.1016/j.revmed.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 02/03/2023]
|
31
|
Amaya-Uribe L, Rojas M, Azizi G, Anaya JM, Gershwin ME. Primary immunodeficiency and autoimmunity: A comprehensive review. J Autoimmun 2019; 99:52-72. [PMID: 30795880 DOI: 10.1016/j.jaut.2019.01.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
The primary immunodeficiency diseases (PIDs) include many genetic disorders that affect different components of the innate and adaptive responses. The number of distinct genetic PIDs has increased exponentially with improved methods of detection and advanced laboratory methodology. Patients with PIDs have an increased susceptibility to infectious diseases and non-infectious complications including allergies, malignancies and autoimmune diseases (ADs), the latter being the first manifestation of PIDs in several cases. There are two types of PIDS. Monogenic immunodeficiencies due to mutations in genes involved in immunological tolerance that increase the predisposition to develop autoimmunity including polyautoimmunity, and polygenic immunodeficiencies characterized by a heterogeneous clinical presentation that can be explained by a complex pathophysiology and which may have a multifactorial etiology. The high prevalence of ADs in PIDs demonstrates the intricate relationships between the mechanisms of these two conditions. Defects in central and peripheral tolerance, including mutations in AIRE and T regulatory cells respectively, are thought to be crucial in the development of ADs in these patients. In fact, pathology that leads to PID often also impacts the Treg/Th17 balance that may ease the appearance of a proinflammatory environment, increasing the odds for the development of autoimmunity. Furthermore, the influence of chronic and recurrent infections through molecular mimicry, bystander activation and super antigens activation are supposed to be pivotal for the development of autoimmunity. These multiple mechanisms are associated with diverse clinical subphenotypes that hinders an accurate diagnosis in clinical settings, and in some cases, may delay the selection of suitable pharmacological therapies. Herein, a comprehensively appraisal of the common mechanisms among these conditions, together with clinical pearls for treatment and diagnosis is presented.
Collapse
Affiliation(s)
- Laura Amaya-Uribe
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Doctoral Program in Biomedical Sciences, Universidad Del Rosario, Bogota, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA.
| |
Collapse
|
32
|
Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019; 61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Bangert E, Wakani L, Merchant M, Strand V, Touma Z. Impact of belimumab on patient-reported outcomes in systemic lupus erythematosus: review of clinical studies. PATIENT-RELATED OUTCOME MEASURES 2019; 10:1-7. [PMID: 30666173 PMCID: PMC6330963 DOI: 10.2147/prom.s134326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune, multisystem rheumatic disease with significant impact on health-related quality of life (HRQoL). Patient-reported outcomes (PROs) provide valuable data on patient perceptions across a variety of domains, such as HRQoL, pain, fatigue, and depression. The measurement and results of PROs with respect to HRQoL in randomized controlled trials (RCTs) on belimumab (B-lymphocyte stimulator inhibitor) in SLE are reviewed here, including BLISS-52 and BLISS-76, as well as publications related to belimumab trials that included HRQoL data. Other trials that evaluated belimumab did not include HRQoL data and were therefore not included in the analysis. The BLISS-52 and BLISS-76 RCTs met their primary endpoints and demonstrated improvements in PROs, measured by the 36-item Short Form Health Survey, EuroQol 5 Dimensions, and Functional Assessment of Chronic Illness Therapy-Fatigue Scale. Belimumab was shown overall to improve PROs in adult autoantibody-positive lupus patients.
Collapse
Affiliation(s)
- Elvira Bangert
- Division of Rheumatology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Laura Wakani
- University of Toronto Lupus Clinic, Toronto Western Hospital, Centre for Prognosis Studies in the Rheumatic Diseases, Toronto, ON, Canada,
| | - Mehveen Merchant
- Division of Rheumatology, Nova Scotia Health Authority, Dalhousie University, Halifax, NS, Canada
| | - Vibeke Strand
- Division of Immunology/Rheumatology, Stanford University, Palo Alto, CA, USA
| | - Zahi Touma
- University of Toronto Lupus Clinic, Toronto Western Hospital, Centre for Prognosis Studies in the Rheumatic Diseases, Toronto, ON, Canada,
| |
Collapse
|
34
|
Kowalczyk-Quintas C, Chevalley D, Willen L, Jandus C, Vigolo M, Schneider P. Inhibition of Membrane-Bound BAFF by the Anti-BAFF Antibody Belimumab. Front Immunol 2018; 9:2698. [PMID: 30524439 PMCID: PMC6256835 DOI: 10.3389/fimmu.2018.02698] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/01/2018] [Indexed: 01/13/2023] Open
Abstract
B cell activating factor of the TNF family (BAFF, also known as BLyS), a cytokine that regulates homeostasis of peripheral B cells, is elevated in the circulation of patients with autoimmune diseases such as systemic lupus erythematosus (SLE). BAFF is synthetized as a membrane-bound protein that can be processed to a soluble form after cleavage at a furin consensus sequence, a site that in principle can be recognized by any of the several proteases of the pro-protein convertase family. Belimumab is a human antibody approved for the treatment of SLE, often cited as specific for the soluble form of BAFF. Here we show in different experimental systems, including in a monocytic cell line (U937) that naturally expresses BAFF, that belimumab binds to membrane-bound BAFF with similar EC50 as the positive control atacicept, which is a decoy receptor for both BAFF and the related cytokine APRIL (a proliferation inducing ligand). In U937 cells, binding of both reagents was only detectable in furin-deficient U937 cells, showing that furin is the main BAFF processing protease in these cells. In CHO cells expressing membrane-bound BAFF lacking the stalk region, belimumab inhibited the activity of membrane-bound BAFF less efficiently than atacicept, while in furin-deficient U937 cells, belimumab inhibited membrane-bound BAFF and residual soluble BAFF as efficiently as atacicept. These reagents did not activate complement or antibody-dependent cell cytotoxicity upon binding to membrane-bound BAFF in vitro. In conclusion, our data show that belimumab can inhibit membrane-bound BAFF, and that BAFF in U937 cells is processed by furin.
Collapse
Affiliation(s)
| | - Dehlia Chevalley
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Michele Vigolo
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Abstract
Acquired Myasthenia Gravis (MG) is a neuromuscular disease caused by autoantibodies against components of the neuromuscular junction. It is a prototype organ-specific autoimmune disease with well-defined antigenic targets mainly the nicotinic acetylcholine receptor (AChR). Patients suffer from fluctuating, fatigable muscle weakness that worsens with activity and improves with rest. Various therapeutic strategies have been used over the years to alleviate MG symptoms. These strategies aim at improving the transmission of the nerve impulse to muscle or at lowering the immune system with steroids or immunosuppressant drugs. Nevertheless, MG remains a chronic disease and symptoms tend to persist in many patients, some being or becoming refractory over time. In this review, based on recent experimental data on MG or based on results from clinical trials for other autoimmune diseases, we explore new potential therapeutic approaches for MG patients, going from non-specific approaches with the use of stem cells with their anti-inflammatory and immunosuppressive properties to targeted therapies using monoclonal antibodies specific for cell-surface antigens or circulating molecules.
Collapse
Affiliation(s)
- Anthony Behin
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, Institut de Myologie, GH Pitié-Salpêtrière, Paris, France.,AIM, Institut de Myologie, Paris, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,UPMC Sorbonne Université, Paris, France.,AIM, Institut de Myologie, Paris, France
| |
Collapse
|
36
|
Mesnyankina AA, Solovyev SK, Aseeva EA, Nasonov EL. THE EFFICIENCY OF BIOLOGICAL THERAPY AND THE FEATURES OF HUMORAL IMMUNITY IN PATIENTS WITH SYSTEMIC LUPUS ERYTHEMATOSUS. ACTA ACUST UNITED AC 2018. [DOI: 10.14412/1995-4484-2018-302-309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective: to investigate the effect of various biological agents (BAs), including combined treatment with rituximab (RTM) and belimumab (BLM), on the activity of systemic lupus erythematosus (SLE) and to evaluate their efficacy and impact on some parameters of humoral immunity.Subjects and methods. BAs were prescribed to 54 patients with a reliable diagnosis of SLE with high and medium activity according to SLEDAI-2K; 40 of them received RTM, 7 – BLM; 7 – combined therapy with RTM and BLM. Clinical and laboratory examinations were made in all the patients at the time of their inclusion and then every 3 months during a year. The results were assessed using SLEDAI-2K, BILAG index, Lupus Erythematosus National Assessment (SELENA)-SLEDAI Flare index (SFI) (a moderate, severe exacerbation), and SLE Responder Index (SRI).Results and discussion. At 3, 6, and 12 months after start of therapy, the use of BAs in all the patients resulted in a disease activity reduction. It was statistically significant (p < 0.00001) in the RTM group; and no statistical analysis was carried out in the BLM and RTM+BLM groups due to the small numbers of patients. At the same time, there was a progressive decrease in the levels of anti-double-stranded DNA (ds-DNA) antibodies (Abs) and an increase in the concentration of the complement fractions C3 and C4 in the RTM and RTM+BLM groups (p < 0.05) at one-year follow-up. After 12 months of therapy with BAs, there was a decrease in IgG (p < 0.02) and IgM (p < 0.03) levels; but overall it remained within the reference ranges. Prior to therapy, irreversible organ damages were recorded in 23 (42.6%) of the 54 patients. The increased damage index at 12 month was observed only in patients receiving RTM, which is probably due to the use of higher-dose glucocorticoids.Conclusion. All three methods of therapy with BAs in SLE patients demonstrated good efficiency shown as a significant decrease in clinical and laboratory activity measures that were assessed by SLEDAI-2K and the levels of anti-ds-DNA and complement components C3 and C4. The decrease in immunoglobulin levels did not go beyond the reference values. Therapy with BLM and RTM+BLM allowed for managing patients with the low and average doses of oral glucocorticoids, which contributed to the reduction of not only the activity, but also risk of irreversible organ damages.
Collapse
|
37
|
Czaja AJ. Emerging therapeutic biomarkers of autoimmune hepatitis and their impact on current and future management. Expert Rev Gastroenterol Hepatol 2018. [PMID: 29540068 DOI: 10.1080/17474124.2018.1453356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autoimmune hepatitis lacks a quantifiable biomarker that is close to its pathogenic mechanisms and that accurately reflects inflammatory activity, correlates with treatment response, and ensures inactive disease before treatment withdrawal. Areas covered: Micro-ribonucleic acids, programmed death-1 protein and its ligands, macrophage migration inhibitory factor, soluble CD163, B cell activating factor, and metabolite patterns in blood were considered the leading candidates as therapeutic biomarkers after search of PubMed from August 1981 to August 2017 using the search words 'biomarkers of autoimmune hepatitis'. Expert commentary: Each of the candidate biomarkers is close to the putative pathogenic mechanisms of autoimmune hepatitis, and each has attributes that support its potential role as a surrogate marker of inflammatory activity that can be monitored during treatment. Future studies must demonstrate the superiority of each biomarker to conventional indices of inflammatory activity and validate their correlation with treatment response and outcome. A reliable therapeutic biomarker would facilitate the individualization of current management algorithms, ensure that pathogenic mechanisms were disrupted or eliminated prior to treatment withdrawal, and reduce the frequency of relapse or unnecessary protracted therapy. The biomarker might also prove to be a target of next-generation therapies.
Collapse
Affiliation(s)
- Albert J Czaja
- a Division of Gastroenterology and Hepatology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
38
|
Wilhelmson AS, Lantero Rodriguez M, Stubelius A, Fogelstrand P, Johansson I, Buechler MB, Lianoglou S, Kapoor VN, Johansson ME, Fagman JB, Duhlin A, Tripathi P, Camponeschi A, Porse BT, Rolink AG, Nissbrandt H, Turley SJ, Carlsten H, Mårtensson IL, Karlsson MCI, Tivesten Å. Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nat Commun 2018; 9:2067. [PMID: 29802242 PMCID: PMC5970247 DOI: 10.1038/s41467-018-04408-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Testosterone deficiency in men is associated with increased risk for autoimmunity and increased B cell numbers through unknown mechanisms. Here we show that testosterone regulates the cytokine BAFF, an essential survival factor for B cells. Male mice lacking the androgen receptor have increased splenic B cell numbers, serum BAFF levels and splenic Baff mRNA. Testosterone deficiency by castration causes expansion of BAFF-producing fibroblastic reticular cells (FRCs) in spleen, which may be coupled to lower splenic noradrenaline levels in castrated males, as an α-adrenergic agonist decreases splenic FRC number in vitro. Antibody-mediated blockade of the BAFF receptor or treatment with the neurotoxin 6-hydroxydopamine revert the increased splenic B cell numbers induced by castration. Among healthy men, serum BAFF levels are higher in men with low testosterone. Our study uncovers a previously unrecognized regulation of BAFF by testosterone and raises important questions about BAFF in testosterone-mediated protection against autoimmunity. Testosterone deficiency is associated with autoimmunity and increased B cell numbers, but the underlying mechanism is unclear. Here the authors show that testosterone may modulate the production of B cell survival factor BAFF by fibroblastic reticular cells via regulation of splenic neurotransmitter levels.
Collapse
Affiliation(s)
- Anna S Wilhelmson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45, Gothenburg, Sweden.,The Finsen Laboratory, Rigshospitalet; Biotech Research and Innovation Centre (BRIC); Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Ole Maaløesvej 5, DK-2200, Copenhagen N, Denmark
| | - Marta Lantero Rodriguez
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45, Gothenburg, Sweden
| | - Alexandra Stubelius
- Center for Bone and Arthritis Research (CBAR), Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Vita Stråket 11, SE-413 45, Gothenburg, Sweden.,Center of Excellence in Nanomedicine and Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Per Fogelstrand
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45, Gothenburg, Sweden
| | - Inger Johansson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45, Gothenburg, Sweden
| | - Matthew B Buechler
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Steve Lianoglou
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Varun N Kapoor
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Box 432, SE-405 30, Gothenburg, Sweden
| | - Johan B Fagman
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Box 100, SE-405 30, Gothenburg, Sweden
| | - Amanda Duhlin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Prabhanshu Tripathi
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, SE-405 30, Gothenburg, Sweden
| | - Bo T Porse
- The Finsen Laboratory, Rigshospitalet; Biotech Research and Innovation Centre (BRIC); Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Ole Maaløesvej 5, DK-2200, Copenhagen N, Denmark
| | - Antonius G Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, University of Gothenburg, Box 431, SE-405 30, Gothenburg, Sweden
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Hans Carlsten
- Center for Bone and Arthritis Research (CBAR), Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Vita Stråket 11, SE-413 45, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Box 480, SE-405 30, Gothenburg, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, SE-413 45, Gothenburg, Sweden.
| |
Collapse
|
39
|
Mieli-Vergani G, Vergani D, Czaja AJ, Manns MP, Krawitt EL, Vierling JM, Lohse AW, Montano-Loza AJ. Autoimmune hepatitis. Nat Rev Dis Primers 2018; 4:18017. [PMID: 29644994 DOI: 10.1038/nrdp.2018.17] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune hepatitis (AIH) is a severe liver disease that affects children and adults worldwide. The diagnosis of AIH relies on increased serum transaminase and immunoglobulin G levels, presence of autoantibodies and interface hepatitis on liver histology. AIH arises in genetically predisposed individuals when a trigger, such as exposure to a virus, leads to a T cell-mediated autoimmune response directed against liver autoantigens; this immune response is permitted by inadequate regulatory immune control leading to a loss of tolerance. AIH responds favourably to immunosuppressive treatment, which should be started as soon as the diagnosis is made. Standard regimens include fairly high initial doses of corticosteroids (prednisone or prednisolone), which are tapered gradually as azathioprine is introduced. For those patients who do not respond to standard treatment, second-line drugs should be considered, including mycophenolate mofetil, calcineurin inhibitors, mechanistic target of rapamycin (mTOR) inhibitors and biologic agents, which should be administered only in specialized hepatology centres. Liver transplantation is a life-saving option for those who progress to end-stage liver disease, although AIH can recur or develop de novo after transplantation. In-depth investigation of immune pathways and analysis of changes to the intestinal microbiota should advance our knowledge of the pathogenesis of AIH and lead to novel, tailored and better tolerated therapies.
Collapse
Affiliation(s)
- Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, Denmark Hill, SE5 9RS London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, Denmark Hill, SE5 9RS London, UK
| | - Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Edward L Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Oxidized low density lipoproteins: The bridge between atherosclerosis and autoimmunity. Possible implications in accelerated atherosclerosis and for immune intervention in autoimmune rheumatic disorders. Autoimmun Rev 2018; 17:366-375. [DOI: 10.1016/j.autrev.2017.11.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
|
41
|
Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: a Comprehensive Review on Pathogenesis, Clinical Presentation and Novel Therapeutic Approaches. Clin Rev Allergy Immunol 2018; 54:1-25. [DOI: 10.1007/s12016-017-8662-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
The non-canonical NF-κB pathway in immunity and inflammation. NATURE REVIEWS. IMMUNOLOGY 2017. [PMID: 28580957 DOI: 10.1038/nri.2017.52)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors is activated by canonical and non-canonical signalling pathways, which differ in both signalling components and biological functions. Recent studies have revealed important roles for the non-canonical NF-κB pathway in regulating different aspects of immune functions. Defects in non-canonical NF-κB signalling are associated with severe immune deficiencies, whereas dysregulated activation of this pathway contributes to the pathogenesis of various autoimmune and inflammatory diseases. Here we review the signalling mechanisms and the biological function of the non-canonical NF-κB pathway. We also discuss recent progress in elucidating the molecular mechanisms regulating non-canonical NF-κB pathway activation, which may provide new opportunities for therapeutic strategies.
Collapse
|
43
|
Giannelou M, Mavragani CP. Cardiovascular disease in systemic lupus erythematosus: A comprehensive update. J Autoimmun 2017; 82:1-12. [PMID: 28606749 DOI: 10.1016/j.jaut.2017.05.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022]
Abstract
Heightened rates of both cardiovascular (CV) events and subclinical atherosclerosis, documented by imaging and vascular function techniques are well established in systemic lupus erythematosus (SLE). While traditional CV factors such as smoking, dyslipidemia, diabetes mellitus (DM), hypertension, central obesity and hyperhomocysteinemia have been reported to be prevalent in lupus patients, they do not fully explain the high rates of ischemic events so far reported, implying that other factors inherent to disease itself could account for the enhanced risk, including disease duration, activity and chronicity, psychosocial factors, medications, genetic variants and altered immunological mechanisms. Though the exact pathogenesis of atherosclerosis in the setting of lupus remains ill defined, an imbalance between endothelial damage and atheroprotection seems to be a central event. Insults leading to endothelial damage in the setting of lupus include oxidized low density lipoprotein (oxLDL), autoantibodies against endothelial cells and phospholipids, type I interferons (IFN) and neutrophil extracellular traps (NETs) directly or through activation of type I IFN pathway. Increased oxidative stress, reduced levels of the normally antioxidant high density lipoprotein (HDL), increased levels of proinflammatory HDL (piHDL) and reduced paraoxonase activity have been related to increased oxLDL levels. On the other hand, impaired atheroprotective mechanisms in lupus include decreased capacity of endothelial repair-partly mediated by type I IFN- and dampened production of atheroprotective autoantibodies. In the present review, traditional and disease related risk factors for CV disease (CVD) in the setting of chronic autoimmune disorders with special focus on SLE will be discussed.
Collapse
Affiliation(s)
- Mayra Giannelou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece; Department of Rheumatology, General Hospital of Athens "G. Gennimatas", Greece
| | - Clio P Mavragani
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece; Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
44
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors is activated by canonical and non-canonical signalling pathways, which differ in both signalling components and biological functions. Recent studies have revealed important roles for the non-canonical NF-κB pathway in regulating different aspects of immune functions. Defects in non-canonical NF-κB signalling are associated with severe immune deficiencies, whereas dysregulated activation of this pathway contributes to the pathogenesis of various autoimmune and inflammatory diseases. Here we review the signalling mechanisms and the biological function of the non-canonical NF-κB pathway. We also discuss recent progress in elucidating the molecular mechanisms regulating non-canonical NF-κB pathway activation, which may provide new opportunities for therapeutic strategies.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center UT Heath Graduate School of Biomedical Sciences, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA
| |
Collapse
|