1
|
Zheng C, Shi Y, Zou Y. T cell co-stimulatory and co-inhibitory pathways in atopic dermatitis. Front Immunol 2023; 14:1081999. [PMID: 36993982 PMCID: PMC10040887 DOI: 10.3389/fimmu.2023.1081999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting the T cell inhibitory pathways has revolutionized cancer treatment. However, ICIs might induce progressive atopic dermatitis (AD) by affecting T cell reactivation. The critical role of T cells in AD pathogenesis is widely known. T cell co-signaling pathways regulate T cell activation, where co-signaling molecules are essential for determining the magnitude of the T cell response to antigens. Given the increasing use of ICIs in cancer treatment, a timely overview of the role of T cell co-signaling molecules in AD is required. In this review, we emphasize the importance of these molecules involved in AD pathogenesis. We also discuss the potential of targeting T cell co-signaling pathways to treat AD and present the unresolved issues and existing limitations. A better understanding of the T cell co-signaling pathways would aid investigation of the mechanism, prognosis evaluation, and treatment of AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Institute of Psoriasis, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| |
Collapse
|
2
|
Sackett SD, Kaplan SJ, Mitchell SA, Brown ME, Burrack AL, Grey S, Huangfu D, Odorico J. Genetic Engineering of Immune Evasive Stem Cell-Derived Islets. Transpl Int 2022; 35:10817. [PMID: 36545154 PMCID: PMC9762357 DOI: 10.3389/ti.2022.10817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Genome editing has the potential to revolutionize many investigative and therapeutic strategies in biology and medicine. In the field of regenerative medicine, one of the leading applications of genome engineering technology is the generation of immune evasive pluripotent stem cell-derived somatic cells for transplantation. In particular, as more functional and therapeutically relevant human pluripotent stem cell-derived islets (SCDI) are produced in many labs and studied in clinical trials, there is keen interest in studying the immunogenicity of these cells and modulating allogeneic and autoimmune immune responses for therapeutic benefit. Significant experimental work has already suggested that elimination of Human Leukocytes Antigen (HLA) expression and overexpression of immunomodulatory genes can impact survival of a variety of pluripotent stem cell-derived somatic cell types. Limited work published to date focuses on stem cell-derived islets and work in a number of labs is ongoing. Rapid progress is occurring in the genome editing of human pluripotent stem cells and their progeny focused on evading destruction by the immune system in transplantation models, and while much research is still needed, there is no doubt the combined technologies of genome editing and stem cell therapy will profoundly impact transplantation medicine in the future.
Collapse
Affiliation(s)
- Sara D. Sackett
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States,*Correspondence: Sara D. Sackett,
| | - Samuel J. Kaplan
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Samantha A. Mitchell
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Matthew E. Brown
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Adam L. Burrack
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, MN,Center for Immunology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Shane Grey
- Immunology Division, Garvan Institute of Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jon Odorico
- Division of Transplantation, Department of Surgery, UW Transplant Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
3
|
Muckenhuber M, Wekerle T, Schwarz C. Costimulation blockade and Tregs in solid organ transplantation. Front Immunol 2022; 13:969633. [PMID: 36119115 PMCID: PMC9478950 DOI: 10.3389/fimmu.2022.969633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining self-tolerance and in containing allo-immune responses in the context of transplantation. Recent advances yielded the approval of the first pharmaceutical costimulation blockers (abatacept and belatacept), with more of them in the pipeline. These costimulation blockers inhibit effector cells with high clinical efficacy to control disease activity, but might inadvertently also affect Tregs. Treg homeostasis is controlled by a complex network of costimulatory and coinhibitory signals, including CD28, the main target of abatacept/belatacept, and CTLA4, PD-1 and ICOS. This review shall give an overview on what effects the therapeutic manipulation of costimulation has on Treg function in transplantation.
Collapse
Affiliation(s)
- Moritz Muckenhuber
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| | - Christoph Schwarz
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
- *Correspondence: Thomas Wekerle, ; Christoph Schwarz,
| |
Collapse
|
4
|
Wang D, Bai X, Wang B, Yi Q, Yu W, Zhang X, Tian R, Zhang X, Li C, Chen Y, Liu Y, Cheng Y, He S. CTLA4Ig/VISTAIg combination therapy selectively induces CD4 + T cell-mediated immune tolerance by targeting the SOCS1 signaling pathway in porcine islet xenotransplantation. Immunology 2022; 166:169-184. [PMID: 35263451 DOI: 10.1111/imm.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
T cell inhibitory receptors can regulate the proliferation or function of T cells by binding to their ligands and present a unique opportunity to manage destructive immune responses during porcine islet xenotransplantation. We applied ex vivo porcine islet xenotransplantation and in vitro mixed lymphocyte-islet reaction models to assess immune checkpoint receptor expression profiles in recipient T cells, investigate whether CTLA4 or VISTA immunoglobulin (Ig) combination therapy alone could suppress porcine islet xenograft rejection and further analyze its potential immune tolerance mechanism. Recipient T cells expressed moderate to high levels of CTLA4, PD-1, TIGIT, and VISTA, and the frequency of CTLA4+ CD4+ , TIGIT+ CD4+ , VISTA+ CD4+ and VISTA+ CD8+ T cells was positively correlated with porcine islet xenograft survival time in xenotransplant recipients. Combined treatment with CTLA4Ig and VISTAIg selectively inhibited recipient CD4+ T cell hyperresponsiveness and proinflammatory cytokine production and significantly delayed xenograft rejection. SOCS1 deficiency in CD4+ T cells stimulated by xenogeneic islets facilitated hyperresponsiveness and abolished the suppressive effect of combination therapy on recipient T cell-mediated porcine islet damage in vivo and in vitro. Further mechanistic studies revealed that combined treatment significantly induced SOCS1 expression and inhibited the Jak-STAT signaling pathway in wild-type recipient CD4+ T cells stimulated by xenogeneic islets, whereas SOCS1 deficiency resulted in Jak-STAT signaling pathway activation in recipient CD4+ T cells. We demonstrated a major role for CTLA4 and VISTA as key targets in CD4+ T cell hyperresponsiveness and porcine islet xenograft rejection. The selective inhibition of CD4+ T cell immunity by CTLA4Ig/VISTAIg is based on SOCS1-dependent signaling.
Collapse
Affiliation(s)
- Dan Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Xue Bai
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Bin Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qiying Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China
| | - Weihua Yu
- Institutes of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xinying Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ruoyuan Tian
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiao Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Caihua Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yi Chen
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yang Liu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, P.R. China
| |
Collapse
|
5
|
He X, Li S, Zhang J, Cao L, Yang C, Rong P, Yi S, Ghimire K, Ma X, Wang W. Benefit of Belatacept in Cord Blood-Derived Regulatory T Cell-Mediated Suppression of Alloimmune Response. Cell Transplant 2021; 30:9636897211046556. [PMID: 34570631 PMCID: PMC8718163 DOI: 10.1177/09636897211046556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of Regulatory T cells (Tregs) in tolerance induction post-transplantation is well-established, but Tregs adoptive transfer alone without combined immunosuppressants have failed so far in achieving clinical outcomes. Here we applied a set of well-designed criteria to test the influence of commonly used immunosuppressants (belatacept, tacrolimus, and mycophenolate) on cord blood-derived Tregs (CB-Tregs). Our study shows that while none of these immunosuppressants modulated the stability and expression of homing molecules by CB-Tregs, belatacept met all other selective criteria, shown by its ability to enhance CB-Tregs-mediated in vitro suppression of the allogeneic response without affecting their viability, proliferation, mitochondrial metabolism and expression of functional markers. In contrast, treatment with tacrolimus or mycophenolate led to reduced expression of functional molecule GITR in CB-Tregs, impaired their viability, proliferation and mitochondrial metabolism. These findings indicate that belatacept could be considered as a candidate in Tregs-based clinical immunomodulation regimens to induce transplant tolerance.
Collapse
Affiliation(s)
- Xing He
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Sang Li
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Juan Zhang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Lu Cao
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pengfei Rong
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shounan Yi
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China.,Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xiaoqian Ma
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Wei Wang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
6
|
Matsuda Y, Watanabe T, Li XK. Approaches for Controlling Antibody-Mediated Allograft Rejection Through Targeting B Cells. Front Immunol 2021; 12:682334. [PMID: 34276669 PMCID: PMC8282180 DOI: 10.3389/fimmu.2021.682334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 01/14/2023] Open
Abstract
Both acute and chronic antibody-mediated allograft rejection (AMR), which are directly mediated by B cells, remain difficult to treat. Long-lived plasma cells (LLPCs) in bone marrow (BM) play a crucial role in the production of the antibodies that induce AMR. However, LLPCs survive through a T cell-independent mechanism and resist conventional immunosuppressive therapy. Desensitization therapy is therefore performed, although it is accompanied by severe side effects and the pathological condition may be at an irreversible stage when these antibodies, which induce AMR development, are detected in the serum. In other words, AMR control requires the development of a diagnostic method that predicts its onset before LLPC differentiation and enables therapeutic intervention and the establishment of humoral immune monitoring methods providing more detailed information, including individual differences in the susceptibility to immunosuppressive agents and the pathological conditions. In this study, we reviewed recent studies related to the direct or indirect involvement of immunocompetent cells in the differentiation of naïve-B cells into LLPCs, the limitations of conventional methods, and the possible development of novel control methods in the context of AMR. This information will significantly contribute to the development of clinical applications for AMR and improve the prognosis of patients who undergo organ transplantation.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Zhang H, Wang Z, Zhang J, Gui Z, Han Z, Tao J, Chen H, Sun L, Fei S, Yang H, Tan R, Chandraker A, Gu M. Combined Immunotherapy With Belatacept and BTLA Overexpression Attenuates Acute Rejection Following Kidney Transplantation. Front Immunol 2021; 12:618737. [PMID: 33732243 PMCID: PMC7959759 DOI: 10.3389/fimmu.2021.618737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/14/2021] [Indexed: 01/11/2023] Open
Abstract
Background Costimulatory blockade provides new therapeutic opportunities for ensuring the long-term survival of kidney grafts. The adoption of the novel immunosuppressant Belatacept has been limited, partly due to concerns regarding higher rates and grades of acute rejection in clinical trials. In this study, we hypothesized that a combined therapy, Belatacept combined with BTLA overexpression, may effectively attenuate acute rejection after kidney transplantation. Materials and Methods The rat kidney transplantation model was used to investigate graft rejection in single and combined therapy. Graft function was analyzed by detecting serum creatinine. Pathological staining was used to observe histological changes in grafts. The expression of T cells was observed by immunohistochemistry and flow cytometry. In vitro, we constructed an antigen-stimulated immune response by mixed lymphocyte culture, treated with or without Belatacept and BTLA-overexpression adenovirus, to observe the proliferation of receptor cells and the expression of cytokines. In addition, western blot and qRT-PCR analyses were performed to evaluate the expression of CTLA-4 and BTLA at various time points during the immune response. Results In rat models, combined therapy reduced the serum creatinine levels and prolonged graft survival compared to single therapy and control groups. Mixed acute rejection was shown in the allogeneic group and inhibited by combination treatment. Belatacept reduced the production of DSA and the deposition of C4d in grafts. Belatacept combined with BTLA overexpression downregulated the secretion of IL-2 and IFN-γ, as well as increasing IL-4 and IL-10 expression. We also found that Belatacept combined with BTLA overexpression inhibited the proliferation of spleen lymphocytes. The duration of the elevated expression levels of CTLA-4 and BTLA differentially affected the immune response. Conclusion Belatacept combined with BTLA overexpression attenuated acute rejection after kidney transplantation and prolonged kidney graft survival, which suggests a new approach for the optimization of early immunosuppression after kidney transplantation.
Collapse
Affiliation(s)
- Hengcheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayi Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
|
9
|
Challenges, Progress, and Prospects of Developing Therapies to Treat Autoimmune Diseases. Cell 2020; 181:63-80. [DOI: 10.1016/j.cell.2020.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/17/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
|
10
|
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K. Targeting B7‐1 in immunotherapy. Med Res Rev 2020; 40:654-682. [DOI: 10.1002/med.21632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Chen
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
| |
Collapse
|