1
|
Lozenov S, Tsoneva Y, Nikolaev G, Konakchieva R. Ikaros Deletions among Bulgarian Patients with Acute Lymphoblastic Leukemia/Lymphoma. Diagnostics (Basel) 2024; 14:1953. [PMID: 39272737 PMCID: PMC11393869 DOI: 10.3390/diagnostics14171953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The Ikaros zinc finger factor 1 is a transcription factor with a well-known role in B- and T-cell development. The deletions of IKZF1 have an established significance in acute lymphoblastic leukemia, while reports on its prevalence and prognostic significance among ALL subtypes and regions vary. Breakpoint-specific qPCR is a practical method for testing of the most frequent types of IKZF1 deletions, considering there is clustering of the deletion events. The most commonly reported deletions are Δ4-7, Δ4-8, Δ2-7, and Δ2-8, with deletion Δ4-7 being the most common one. We retrospectively administered a breakpoint-specific qPCR design for screening for the most frequent types of IKZF1 deletions to 78 ALL patients that were diagnosed and treated between 2010 and 2022. We observed the products through gel electrophoresis, and we conducted descriptive statistics, EFS, and OS analyses. Our study found 19 patients with IKZF1 deletions, with two subjects manifesting more than one deletion. The prevalence in the different subgroups was as follows: Ph/+/ B-ALL 46%, Ph/-/ B-ALL 30%, T-ALL/LBL 4%. There was a statistically significant difference in EFS of 39 vs. 0% in favor of patients without deletions (p = 0.000), which translated to a difference in OS of 49 vs. 0% (p = 0.001). This difference was preserved in the subgroup of Ph/-/ B-ALL, while there was no significant difference in the Ph/+/ B-ALL. The most frequently observed type of deletion (15 out of 19) was the Δ4-7. There is a strong negative prognostic impact of the IKZF1 deletions at diagnosis in the observed population. IKZF1 deletion testing through breakpoint-specific qPCR is a practical approach in diagnostic testing for this risk factor. IKZF1 deletions may warrant treatment decisions and intensified treatment strategies to overcome the negative prognostic impact.
Collapse
Affiliation(s)
- Stefan Lozenov
- Specialized Hospital for Active Treatment of Hematology Diseases, 1756 Sofia, Bulgaria
| | - Yoanna Tsoneva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
2
|
Stewart BL, Helber H, Bannon SA, Deuitch NT, Ferguson M, Fiala E, Hamilton KV, Malcolmson J, Pencheva B, Smith-Simmer K. Risk assessment and genetic counseling for hematologic malignancies-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2024. [PMID: 39189353 DOI: 10.1002/jgc4.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Hematologic malignancies (HMs) are a heterogeneous group of cancers impacting individuals of all ages that have been increasingly recognized in association with various germline predisposition syndromes. Given the myriad of malignancy subtypes, expanding differential diagnoses, and unique sample selection requirements, evaluation for hereditary predisposition to HM presents both challenges as well as exciting opportunities in the ever-evolving field of genetic counseling. This practice resource has been developed as a foundational resource for genetic counseling approaches to hereditary HMs and aims to empower genetic counselors who encounter individuals and families with HMs in their practice.
Collapse
Affiliation(s)
| | - Hannah Helber
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Hematology and Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah A Bannon
- National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Elise Fiala
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kayla V Hamilton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Janet Malcolmson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bojana Pencheva
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelcy Smith-Simmer
- Academic Affairs, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, UW Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Guirguis J, Iosim S, Jones D, Likhite M, Chen F, Kesserwan C, Gindin T, Kahn PJ, Beck D, Oza VS, Hillier K. Neutrophilic dermatosis in a patient with an IKZF1 variant and a review of monogenic autoinflammatory disorders presenting with neutrophilic dermatoses. Pediatr Dermatol 2024; 41:707-713. [PMID: 38413050 DOI: 10.1111/pde.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/03/2024] [Indexed: 02/29/2024]
Abstract
Monogenic diseases of immune dysregulation should be considered in the evaluation of children presenting with recurrent neutrophilic dermatoses in association with systemic signs of inflammation, autoimmune disease, hematologic abnormalities, and opportunistic or recurrent infections. We report the case of a 2-year-old boy presenting with a neutrophilic dermatosis, found to have a novel likely pathogenic germline variant of the IKAROS Family Zinc Finger 1 (IKZF1) gene; the mutation likely results in a loss of function dimerization defective protein based on reports and studies of similar variants. IKZF1 variants could potentially lead to aberrant neutrophil chemotaxis and development of neutrophilic dermatoses. Long-term surveillance is required to monitor the development of hematologic malignancy, autoimmunity, immunodeficiency, and infection in patients with pathogenic IKZF1 germline variants.
Collapse
Affiliation(s)
- Justina Guirguis
- Department of Dermatology, The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Sonia Iosim
- Department of Pediatrics, Hassenfeld Children's Hospital at NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Derek Jones
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Maryel Likhite
- Center for Human Genetics and Genomics, NYU Grossman School of Medicine, New York, New York, USA
| | - Fei Chen
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | - Chimene Kesserwan
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Tatyana Gindin
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Philip J Kahn
- Department of Pediatrics, Division of Pediatric Rheumatology, Hassenfeld Children's Hospital at NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | - David Beck
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York, USA
| | - Vikash S Oza
- Department of Dermatology and Pediatrics, The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA
| | - Kirsty Hillier
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Hassenfeld Children's Hospital at NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Feng L, Zhang H, Liu T. Multifaceted roles of IKZF1 gene, perspectives from bench to bedside. Front Oncol 2024; 14:1383419. [PMID: 38978740 PMCID: PMC11228169 DOI: 10.3389/fonc.2024.1383419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
The IKZF1 gene encodes a transcription factor that belongs to the family of zinc-finger DNA-binding proteins associated with chromatin remodeling. The protein product, IKAROS, had been proved to regulate lymphopoiesis. Subsequent mouse model studies have further confirmed its regulating role in lymphopoiesis as well as in hematopoiesis; besides, it associates with immune function, certain immune disorders like common variable immunodeficiency and dysgammaglobulinemia have been proved to be associated with germline IKZF1 mutations. Dysfunction of IKAROS also bears paramount significance in leukemic transformation and alterations of IKZF1 gene predicts a poor prognosis in hematological malignancies. As an independent prognostic marker, IKZF1 has been incorporated in the risk stratification of BCP-ALL and stratification-guided therapy has also been generated. In this review, we provide a concise and comprehensive overview on the multifaceted roles of IKZF1 gene.
Collapse
Affiliation(s)
| | | | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
García-Aznar JM, Alonso Alvarez S, Bernal Del Castillo T. Pivotal role of BCL11B in the immune, hematopoietic and nervous systems: a review of the BCL11B-associated phenotypes from the genetic perspective. Genes Immun 2024; 25:232-241. [PMID: 38472338 PMCID: PMC11178493 DOI: 10.1038/s41435-024-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The transcription factor BCL11B plays an essential role in the development of central nervous system and T cell differentiation by regulating the expression of numerous genes involved in several pathways. Monoallelic defects in the BCL11B gene leading to loss-of-function are associated with a wide spectrum of phenotypes, including neurological disorders with or without immunological features and susceptibility to hematological malignancies. From the genetic point of view, the landscape of BCL11B mutations reported so far does not fully explain the genotype-phenotype correlation. In this review, we sought to compile the phenotypic and genotypic variables associated with previously reported mutations in this gene in order to provide a better understanding of the consequences of deleterious variants. We also highlight the importance of a careful evaluation of the mutation type, its location and the pattern of inheritance of the variants in order to assign the most accurate pathogenicity and actionability of the genetic findings.
Collapse
Affiliation(s)
- José María García-Aznar
- Healthincode, A Coruña, Spain.
- Universitary Institute of Oncology of Principado de Asturias (IUOPA), Oviedo, Spain.
- Health Research Institute of Principado de Asturias, Oviedo, Spain.
| | - Sara Alonso Alvarez
- Universitary Institute of Oncology of Principado de Asturias (IUOPA), Oviedo, Spain
- Health Research Institute of Principado de Asturias, Oviedo, Spain
- Hematology Department, Hospital Universitario Clínico de Asturias, Oviedo, Spain
| | - Teresa Bernal Del Castillo
- Universitary Institute of Oncology of Principado de Asturias (IUOPA), Oviedo, Spain
- Health Research Institute of Principado de Asturias, Oviedo, Spain
- Hematology Department, Hospital Universitario Clínico de Asturias, Oviedo, Spain
| |
Collapse
|
7
|
Strauss T, Körholz J, Kuehn HS, Gil Silva AA, Taube F, Trautmann-Grill K, Stittrich A, Pietzsch L, Wiedemuth R, Wahn V, von Bernuth H, Rosenzweig SD, Fasshauer M, Krüger R, Schuetz C. IKAROS-how many feathers have you lost: mild and severe phenotypes in IKZF1 deficiency. Front Pediatr 2024; 12:1345730. [PMID: 38813543 PMCID: PMC11135284 DOI: 10.3389/fped.2024.1345730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Heterozygous germline variants in human IKZF1 encoding for IKAROS define an inborn error of immunity with immunodeficiency, immune dysregulation and risk of malignancy with a broad phenotypic spectrum. Growing evidence of underlying pathophysiological genotype-phenotype correlations helps to improve our understanding of IKAROS-associated diseases. We describe 6 patients from 4 kindreds with two novel IKZF1 variants leading to haploinsufficiency from 3 centers in Germany. We also provide an overview of first symptoms to a final diagnosis including data from the literature.
Collapse
Affiliation(s)
- Timmy Strauss
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Julia Körholz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Agustin A. Gil Silva
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Franziska Taube
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
- Department of Hematology and Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Karolin Trautmann-Grill
- Department of Hematology and Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin Charité-Vivantes GmbH, Berlin, Germany
| | - Leonora Pietzsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Ralf Wiedemuth
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Maria Fasshauer
- ImmunoDeficiencyCenter Leipzig (IDCL), Hospital St. Georg GGmbH Leipzig, Academic Teaching Hospital of the University of Leipzig, Leipzig, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, University Center for Chronic Immunodeficiencies (UCID), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Xu J, Li J, Wang X, An Y, Liu W, Luo R, Sun C. IRF4 Knockdown Inhibits the Chronic Rhinosinusitis Without Nasal Polyps Development by Regulating NLRP3/Caspase-1/GSDMD-Mediated Pyroptosis. Biochem Genet 2024:10.1007/s10528-024-10792-8. [PMID: 38635014 DOI: 10.1007/s10528-024-10792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Chronic rhinosinusitis without nasal polyps (CRSsNP) is a CRS phenotype. However, the mechanisms of CRSsNP remains unclear. Differentially expressed genes (DEGs) were obtained from the GSE36830 and GSE198950 datasets through the GEO2R tool. The six hub genes were screened by the protein-protein interaction (PPI) network analysis and Cytoscape software. Then we constructed the mouse models of CRS and verified the expression levels of hub genes by reverse transcription quantitative PCR (RT-qPCR). Hematoxylin-eosin (HE) staining was employed to observe pathological alterations in mouse tissues. Casepase-3 expression was detected by immunohistochemistry (IHC). The levels of TNF-α, IL-12, IL-6, IL-1β, LDH, and IL-18 were evaluated using enzyme-linked immunosorbent assay (ELISA). Pyroptosis-related protein expressions were measured by western blotting. Cell counting kit-8 (CCK-8) and flow cytometry were performed to assess the proliferation and apoptosis of lipopolysaccharide (LPS)-induced NP69 cells. Six hub DEGs were identified. The expression levels of IRF4, IKZF1, and CD79A were obviously increased in CRSsNP, while those of ADH6, ADH1A, and LDHC were significantly decreased. IRF4 knockdown attenuated the pathologic features of CRSsNP. IRF4 knockdown reduced levels of the TNF-α, IL-12, IL-6 IL-1β, LDH, and IL-18 as well as the proteins expression of Casepase-1, GSDMD, and NLRP3 both in vivo and in vitro, implying that inflammation and pyroptosis were inhibited. IRF4 knockdown hinders the development of CRSsNP by inhibiting the inflammatory response and NLRP3/Caspase-1/GSDMD-mediated pyroptosis, which offers novel promising treatment strategies for clinical intervention.
Collapse
Affiliation(s)
- Jun Xu
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China.
| | - Jiahui Li
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Xiaoya Wang
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Yunsong An
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Wenlong Liu
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Renzhong Luo
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China
| | - Changzhi Sun
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, No. 9, Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
9
|
Peng X, Kaviany S. Approach to Diagnosing Inborn Errors of Immunity. Rheum Dis Clin North Am 2023; 49:731-739. [PMID: 37821192 DOI: 10.1016/j.rdc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Inborn errors of immunity are now understood to encompass manifold features including but not limited to immunodeficiency, autoimmunity, autoinflammation, atopy, bone marrow defects, and/or increased malignancy risk. As such, it is essential to maintain a high index of suspicion, as these disorders are not limited to specific demographics such as children or those with recurrent infections. Clinical presentations and standard immunophenotyping are informative for suggesting potential underlying etiologies, but integration of data from multimodal approaches including genomics is often required to achieve diagnosis.
Collapse
Affiliation(s)
- Xiao Peng
- McKusick-Nathans, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Blalock 1008, Baltimore, MD 21287, USA
| | - Saara Kaviany
- The University of Chicago & Biological Sciences, Department of Pediatrics, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Jia X, Tan L, Chen S, Tang R, Chen W. Monogenic lupus: Tracing the therapeutic implications from single gene mutations. Clin Immunol 2023; 254:109699. [PMID: 37481012 DOI: 10.1016/j.clim.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Monogenic lupus, a distinctive variant of systemic lupus erythematosus (SLE), is characterized by early onset, family-centric clustering, and heightened disease severity. So far, over thirty genetic variations have been identified as single-gene etiology of SLE and lupus-like phenotypes. The critical role of these gene mutations in disrupting various immune pathways is increasingly recognized. In particular, single gene mutation-driven dysfunction within the innate immunity, notably deficiencies in the complement system, impedes the degradation of free nucleic acid and immune complexes, thereby promoting activation of innate immune cells. The accumulation of these components in various tissues and organs creates a pro-inflammatory microenvironment, characterized by a surge in pro-inflammatory cytokines, chemokines, reactive oxygen species, and type I interferons. Concurrently, single gene mutation-associated defects in the adaptive immune system give rise to the emergence of autoreactive T cells, hyperactivated B cells and plasma cells. The ensuing spectrum of cytokines and autoimmune antibodies drives systemic disease manifestations, primarily including kidney, skin and central nervous system-related phenotypes. This review provides a thorough overview of the single gene mutations and potential consequent immune dysregulations in monogenic lupus, elucidating the pathogenic mechanisms of monogenic lupus. Furthermore, it discusses the recent advances made in the therapeutic interventions for monogenic lupus.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruihan Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
11
|
Bogush D, Schramm J, Ding Y, He B, Singh C, Sharma A, Tukaramrao DB, Iyer S, Desai D, Nalesnik G, Hengst J, Bhalodia R, Gowda C, Dovat S. Signaling pathways and regulation of gene expression in hematopoietic cells. Adv Biol Regul 2023; 88:100942. [PMID: 36621151 DOI: 10.1016/j.jbior.2022.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cellular functions are regulated by signal transduction pathway networks consisting of protein-modifying enzymes that control the activity of many downstream proteins. Protein kinases and phosphatases regulate gene expression by reversible phosphorylation of transcriptional factors, which are their direct substrates. Casein kinase II (CK2) is a serine/threonine kinase that phosphorylates a large number of proteins that have critical roles in cellular proliferation, metabolism and survival. Altered function of CK2 has been associated with malignant transformation, immunological disorders and other types of diseases. Protein phosphatase 1 (PP1) is a serine/threonine phosphatase, which regulates the phosphorylation status of many proteins that are essential for cellular functions. IKAROS is a DNA-binding protein, which functions as a regulator of gene transcription in hematopoietic cells. CK2 directly phosphorylates IKAROS at multiple phosphosites which determines IKAROS activity as a regulator of gene expression. PP1 binds to IKAROS via the PP1-consensus recognition site and dephosphorylates serine/threonine residues that are phosphorylated by CK2. Thus, the interplay between CK2 and PP1 signaling pathways have opposing effects on the phosphorylation status of their mutual substrate - IKAROS. This review summarizes the effects of CK2 and PP1 on IKAROS role in regulation of gene expression and its function as a tumor suppressor in leukemia.
Collapse
Affiliation(s)
- Daniel Bogush
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Joseph Schramm
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Yali Ding
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Bing He
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chingakham Singh
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Arati Sharma
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | | | - Soumya Iyer
- University of Chicago, Chicago, IL, 60637, USA
| | - Dhimant Desai
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Gregory Nalesnik
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Jeremy Hengst
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Riya Bhalodia
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA
| | - Chandrika Gowda
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| | - Sinisa Dovat
- Pennsylvania State University College of Medicine, Hershey, PA, 1703, USA.
| |
Collapse
|
12
|
Kuehn HS, Boast B, Rosenzweig SD. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol 2023; 212:129-136. [PMID: 36433803 PMCID: PMC10128159 DOI: 10.1093/cei/uxac109] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022] Open
Abstract
IKAROS/IKZF1 plays a pivotal role in lymphocyte differentiation and development. Germline mutations in IKZF1, which have been shown to be associated with primary immunodeficiency, can be classified through four different mechanisms of action depending on the protein expression and its functional defects: haploinsufficiency, dimerization defective, dominant negative, and gain of function. These different mechanisms are associated with variable degrees of susceptibility to infectious diseases, autoimmune disorders, allergic diseases, and malignancies. To date, more than 30 heterozygous IKZF1 germline variants have been reported in patients with primary immunodeficiency. Here we review recent discoveries and clinical/immunological characterization of IKAROS-associated diseases that are linked to different mechanisms of action in IKAROS function.
Collapse
Affiliation(s)
- Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Brigette Boast
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
13
|
Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023; 12:pathogens12020272. [PMID: 36839544 PMCID: PMC9958715 DOI: 10.3390/pathogens12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Enhanced susceptibility to microbes, often resulting in severe, intractable and frequent infections due to usually innocuous organisms at uncommon sites, is the most striking feature in individuals with an inborn error of immunity. In this narrative review, based on the International Union of Immunological Societies' 2022 (IUIS 2022) Update on phenotypic classification of human inborn errors of immunity, the focus is on commonly encountered Combined Immunodeficiency Disorders (CIDs) with susceptibility to infections. Combined immune deficiency disorders are usually commensurate with survival beyond infancy unlike Severe Combined Immune Deficiency (SCID) and are often associated with clinical features of a syndromic nature. Defective humoral and cellular immune responses result in susceptibility to a broad range of microbial infections. Although disease onset is usually in early childhood, mild defects may present in late childhood or even in adulthood. A precise diagnosis is imperative not only for determining management strategies, but also for providing accurate genetic counseling, including prenatal diagnosis, and also in deciding empiric treatment of infections upfront before investigation reports are available.
Collapse
|
14
|
Thompson MA, McCann BE, Simmons RB, Rhen T. Major locus on ECA18 influences effectiveness of GonaCon vaccine in feral horses. J Reprod Immunol 2023; 155:103779. [PMID: 36462462 DOI: 10.1016/j.jri.2022.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Contraceptive vaccines are used to reduce birth rates in wild and feral animal populations. While the immunocontraceptive GonaCon-Equine has proven effective in reducing fertility among female feral horses, there is individual variation in the duration of infertility following treatment. To identify genetic factors influencing the effectiveness of GonaCon-Equine, we conducted a genome-wide association study of 88 mares from a feral population genotyped using the Illumina GGP Equine 70k SNP array. Contraceptive treatment schedules and long-term foaling rates have been recorded for each individual. We used mixed linear models to control for relatedness among mares. We found a significant association (p < 5 ×10-8) with a locus on equine chromosome 18. The most likely candidate genes in this region are STAT1 and STAT4, which are both involved in immune system function. Variation in STAT function could affect the immune response to the vaccine, leading to variation in contraceptive efficacy. Additional SNPs reaching a less stringent threshold of significance (p < 5 ×10-6) were located on other chromosomes near known immune system genes, supporting the hypothesis that variation in immunocontraceptive efficacy can be attributed to genetic variation in immune response rather than fertility genes.
Collapse
Affiliation(s)
- Melissa A Thompson
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA; Theodore Roosevelt National Park, National Park Service, Medora, ND 58645, USA.
| | - Blake E McCann
- Theodore Roosevelt National Park, National Park Service, Medora, ND 58645, USA
| | - Rebecca B Simmons
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
15
|
Peng XP, Caballero-Oteyza A, Grimbacher B. Common Variable Immunodeficiency: More Pathways than Roads to Rome. ANNUAL REVIEW OF PATHOLOGY 2023; 18:283-310. [PMID: 36266261 DOI: 10.1146/annurev-pathmechdis-031521-024229] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fifty years have elapsed since the term common variable immunodeficiency (CVID) was introduced to accommodate the many and varied antibody deficiencies being identified in patients with suspected inborn errors of immunity (IEIs). Since then, how the term is understood and applied for diagnosis and management has undergone many revisions, though controversy persists on how exactly to define and classify CVID. Many monogenic disorders have been added under its aegis, while investigations into polygenic, epigenetic, and somatic contributions to CVID susceptibility have gained momentum. Expansion of the overall IEI landscape has increasingly revealed genotypic and phenotypic overlap between CVID and various other immunological conditions, while increasingly routine genotyping of CVID patients continues to identify an incredible diversity of pathophysiological mechanisms affecting even single genes. Though many questions remain to be answered, the lessons we have already learned from CVID biology have greatly informed our understanding of adaptive, but also innate, immunity.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Matza Porges S, Shamriz O. Genetics of Immune Dysregulation and Cancer Predisposition: Two Sides of the Same Coin. Clin Exp Immunol 2022; 210:114-127. [PMID: 36165533 PMCID: PMC9750831 DOI: 10.1093/cei/uxac089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 01/25/2023] Open
Abstract
Approximately 10% of cancers have a hereditary predisposition. However, no genetic diagnosis is available in 60%-80% of familial cancers. In some of these families, immune dysregulation-mediated disease is frequent. The immune system plays a critical role in identifying and eliminating tumors; thus, dysregulation of the immune system can increase the risk of developing cancer. This review focuses on some of the genes involved in immune dysregulation the promote the risk for cancer. Genetic counseling for patients with cancer currently focuses on known genes that raise the risk of cancer. In missing hereditary familial cases, the history family of immune dysregulation should be recorded, and genes related to the immune system should be analyzed in relevant families. On the other hand, patients with immune disorders diagnosed with a pathogenic mutation in an immune regulatory gene may have an increased risk of cancer. Therefore, those patients need to be under surveillance for cancer. Gene panel and exome sequencing are currently standard methods for genetic diagnosis, providing an excellent opportunity to jointly test cancer and immune genes.
Collapse
Affiliation(s)
- Sigal Matza Porges
- Department of Human Genetics, Institute for Medical Research, the Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biotechnology, Hadassah Academic College, Jerusalem, Israel
| | - Oded Shamriz
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah Medical Organization, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Chawla S, Barman P, Tyagi R, Jindal AK, Sharma S, Rawat A, Singh S. Autoimmune Cytopenias in Common Variable Immunodeficiency Are a Diagnostic and Therapeutic Conundrum: An Update. Front Immunol 2022; 13:869466. [PMID: 35795667 PMCID: PMC9251126 DOI: 10.3389/fimmu.2022.869466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency (PID). CVID is a heterogenous condition and clinical manifestations may vary from increased susceptibility to infections to autoimmune manifestations, granulomatous disease, polyclonal lymphoproliferation, and increased risk of malignancy. Autoimmune manifestations may, at times, be the first and only clinical presentation of CVID, resulting in diagnostic dilemma for the treating physician.Autoimmune cytopenias (autoimmune haemolytic anaemia and/or thrombocytopenia) are the most common autoimmune complications seen in patients with CVID. Laboratory investigations such as antinuclear antibodies, direct Coomb’s test and anti-platelet antibodies may not be useful in patients with CVID because of lack of specific antibody response. Moreover, presence of autoimmune cytopenias may pose a significant therapeutic challenge as use of immunosuppressive agents can be contentious in these circumstances. It has been suggested that serum immunoglobulins must be checked in all patients presenting with autoimmune cytopenia such as immune thrombocytopenia or autoimmune haemolytic anaemia.It has been observed that patients with CVID and autoimmune cytopenias have a different clinical and immunological profile as compared to patients with CVID who do not have an autoimmune footprint. Monogenic defects have been identified in 10-50% of all patients with CVID depending upon the population studied. Monogenic defects are more likely to be identified in patients with CVID with autoimmune complications. Common genetic defects that may lead to CVID with an autoimmune phenotype include nuclear factor kappa B subunit 1 (NF-kB1), Lipopolysaccharide (LPS)-responsive beige-like anchor protein (LRBA), cytotoxic T lymphocyte antigen 4 (CTLA4), Phosphoinositide 3-kinase (PI3K), inducible T-cell costimulatory (ICOS), IKAROS and interferon regulatory factor-2 binding protein 2 (IRF2BP2).In this review, we update on recent advances in pathophysiology and management of CVID with autoimmune cytopenias.
Collapse
|
18
|
Christie SM, Fijen C, Rothenberg E. V(D)J Recombination: Recent Insights in Formation of the Recombinase Complex and Recruitment of DNA Repair Machinery. Front Cell Dev Biol 2022; 10:886718. [PMID: 35573672 PMCID: PMC9099191 DOI: 10.3389/fcell.2022.886718] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
V(D)J recombination is an essential mechanism of the adaptive immune system, producing a diverse set of antigen receptors in developing lymphocytes via regulated double strand DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex, consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is completed by classical non-homologous end joining (NHEJ). Many of the individual steps of this process have been well described and new research has increased the scale to understand the mechanisms of initiation and intermediate stages of the pathway. In this review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of recombination and formation of a paired complex, 3) the transition from a post-cleavage complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the potential redundant roles of certain factors in repairing the break. Regulatory (non-core) domains of RAGs are not necessary for catalytic activity, but likely influence recruitment and stabilization through interaction with modified histones and conformational changes. To form long range paired complexes, recent studies have found evidence in support of large scale chromosomal contraction through various factors to utilize diverse gene segments. Following the paired cleavage event, four broken DNA ends must now make a regulated transition to the repair phase, which can be controlled by dynamic conformational changes and post-translational modification of the factors involved. Additionally, we examine the overlapping roles of certain NHEJ factors which allows for prevention of genomic instability due to incomplete repair in the absence of one, but are lethal in combined knockouts. To conclude, we focus on the importance of understanding the detail of these processes in regards to off-target recombination or deficiency-mediated clinical manifestations.
Collapse
Affiliation(s)
- Shaun M. Christie
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Carel Fijen
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Eli Rothenberg
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| |
Collapse
|
19
|
Díaz-Alberola I, Espuch-Oliver A, García-Aznar JM, Ganoza-Gallardo C, Aguilera-Franco M, Sampedro A, Jiménez P, López-Nevot MÁ. Common Variable Immunodeficiency Associated with a De Novo IKZF1 Variant and a Low Humoral Immune Response to the SARS-CoV-2 Vaccine. J Clin Med 2022; 11:2303. [PMID: 35566429 PMCID: PMC9101713 DOI: 10.3390/jcm11092303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIMS Common variable immunodeficiency (CVID) comprises a group of diseases with heterogeneous clinical and immunological manifestations. Several mutations have been identified in genes encoding proteins essential for immune function. Our aim was to phenotypically and genotypically characterize a patient diagnosed with CVID and study his response to the SARS-CoV-2 vaccine. METHODS We performed a next-generation sequencing analysis, a CMIA, and an ELISA to analyze the humoral and cellular response to the SARS-CoV-2 vaccine, respectively. We also employed flow cytometry and immunoturbidimetry to assess the patient's global immune status. RESULTS We found a low humoral but positive cellular response to the SARS-CoV-2 vaccine. NGS screening revealed a transition from guanine to adenine at position c.485 of the IKZF1 gene in heterozygosity, giving rise to the R162Q variant, which was not present in his parents. CONCLUSIONS The R162Q variant of the IKZF1 gene has been associated with CVID type 13, but always with an autosomal dominant inheritance with high penetrance. Therefore, we present for the first time a case of CVID associated with a de novo heterozygous R162Q variant in the IKZF1 gene in a patient with a low humoral immune response to the complete COVID-19 vaccination program.
Collapse
Affiliation(s)
- Irene Díaz-Alberola
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Programa de Doctorado en Biomedicina, Universidad de Granada, 18016 Granada, Spain
| | - Andrea Espuch-Oliver
- Hospital General Nuestra Señora del Prado, Talavera de la Reina, 45600 Toledo, Spain;
| | | | | | - María Aguilera-Franco
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (A.S.)
| | - Antonio Sampedro
- Servicio de Microbiología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (M.A.-F.); (A.S.)
| | - Pilar Jiménez
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Miguel Ángel López-Nevot
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (P.J.); (M.Á.L.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
20
|
Shahin T, Mayr D, Shoeb MR, Kuehn HS, Hoeger B, Giuliani S, Gawriyski LM, Petronczki ÖY, Hadjadj J, Bal SK, Zoghi S, Haimel M, Jimenez Heredia R, Boutboul D, Triebwasser MP, Rialland-Battisti F, Costedoat Chalumeau N, Quartier P, Tangye SG, Fleisher TA, Rezaei N, Romberg N, Latour S, Varjosalo M, Halbritter F, Rieux-Laucat F, Castanon I, Rosenzweig SD, Boztug K. Identification of germline monoallelic mutations in IKZF2 in patients with immune dysregulation. Blood Adv 2022; 6:2444-2451. [PMID: 34920454 PMCID: PMC9006292 DOI: 10.1182/bloodadvances.2021006367] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022] Open
Abstract
Helios, encoded by IKZF2, is a member of the Ikaros family of transcription factors with pivotal roles in T-follicular helper, NK- and T-regulatory cell physiology. Somatic IKZF2 mutations are frequently found in lymphoid malignancies. Although germline mutations in IKZF1 and IKZF3 encoding Ikaros and Aiolos have recently been identified in patients with phenotypically similar immunodeficiency syndromes, the effect of germline mutations in IKZF2 on human hematopoiesis and immunity remains enigmatic. We identified germline IKZF2 mutations (one nonsense (p.R291X)- and 4 distinct missense variants) in six patients with systemic lupus erythematosus, immune thrombocytopenia or EBV-associated hemophagocytic lymphohistiocytosis. Patients exhibited hypogammaglobulinemia, decreased number of T-follicular helper and NK cells. Single-cell RNA sequencing of PBMCs from the patient carrying the R291X variant revealed upregulation of proinflammatory genes associated with T-cell receptor activation and T-cell exhaustion. Functional assays revealed the inability of HeliosR291X to homodimerize and bind target DNA as dimers. Moreover, proteomic analysis by proximity-dependent Biotin Identification revealed aberrant interaction of 3/5 Helios mutants with core components of the NuRD complex conveying HELIOS-mediated epigenetic and transcriptional dysregulation.
Collapse
Affiliation(s)
- Tala Shahin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniel Mayr
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sarah Giuliani
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Lisa M. Gawriyski
- Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Özlem Yüce Petronczki
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jérôme Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Michael P. Triebwasser
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Fanny Rialland-Battisti
- Pediatric Onco-Hematology Department, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Nathalie Costedoat Chalumeau
- Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP) Centre, Université de Paris, Paris, France
| | - Pierre Quartier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; and
| | - Thomas A. Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran, Iran
| | - Neil Romberg
- Division of Immunology and Allergy, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris, France
| | - Markku Varjosalo
- Proteomics Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université de Paris, Paris, France
| | - Irinka Castanon
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Boast B, Nunes-Santos CDJ, Kuehn HS, Rosenzweig SD. Ikaros-Associated Diseases: From Mice to Humans and Back Again. Front Pediatr 2021; 9:705497. [PMID: 34354970 PMCID: PMC8330404 DOI: 10.3389/fped.2021.705497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
The normal expression of Ikaros (IKZF1) is important for the proper functioning of both the human and murine immune systems. Whilst our understanding of IKZF1 in the immune system has been greatly enhanced by the study of mice carrying mutations in Ikzf1, analyses of human patients carrying germline IKZF1 mutations have been instrumental in understanding its biological role within the human immune system and its effect on human disease. A myriad of different mutations in IKZF1 have been identified, spanning across the entire gene causing differential clinical outcomes in patients including immunodeficiency, immune dysregulation, and cancer. The majority of mutations in humans leading to IKAROS-associated diseases are single amino acid heterozygous substitutions that affect the overall function of the protein. The majority of mutations studied in mice however, affect the expression of the protein rather than its function. Murine studies would suggest that the complete absence of IKZF1 expression leads to severe and sometimes catastrophic outcomes, yet these extreme phenotypes are not commonly observed in patients carrying IKZF1 heterozygous mutations. It is unknown whether this discrepancy is simply due to differences in zygosity, the role and regulation of IKZF1 in the murine and human immune systems, or simply due to a lack of similar controls across both groups. This review will focus its analysis on the current literature surrounding what is known about germline IKZF1 defects in both the human and the murine immune systems, and whether existing mice models are indeed accurate tools to study the effects of IKZF1-associated diseases.
Collapse
Affiliation(s)
- Brigette Boast
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Cristiane de Jesus Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Sergio D. Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|