1
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Rezagholizadeh F, Tajik F, Talebi M, Taha SR, Shariat Zadeh M, Farhangnia P, Hosseini HS, Nazari A, Mollazadeh Ghomi S, Kamrani Mousavi SM, Haeri Moghaddam N, Khorramdelazad H, Joghataei MT, Safari E. Unraveling the potential of CD8, CD68, and VISTA as diagnostic and prognostic markers in patients with pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1283364. [PMID: 38357542 PMCID: PMC10865497 DOI: 10.3389/fimmu.2024.1283364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Pancreatic cancer is a truculent disease with limited treatment options and a grim prognosis. Immunotherapy has shown promise in treating various types of cancer, but its effectiveness in pancreatic cancer has been lacking. As a result, it is crucial to identify markers associated with immunological pathways in order to improve the treatment outcomes for this deadly cancer. The purpose of this study was to investigate the diagnostic and prognostic significance of three markers, CD8, CD68, and VISTA, in pancreatic ductal adenocarcinoma (PDAC), the most common subtype of pancreatic cancer. Methods We analyzed gene expression data from Gene Expression Omnibus (GEO) database using bioinformatics tools. We also utilized the STRING online tool and Funrich software to study the protein-protein interactions and transcription factors associated with CD8, CD68, and VISTA. In addition, tissue microarray (TMA) and immunohistochemistry (IHC) staining were performed on 228 samples of PDAC tissue and 10 samples of normal pancreatic tissue to assess the expression levels of the markers. We then correlated these expression levels with the clinicopathological characteristics of the patients and evaluated their survival rates. Results The analysis of the GEO data revealed slightly elevated levels of VISTA in PDAC samples compared to normal tissues. However, there was a significant increase in CD68 expression and a notable reduction in CD8A expression in pancreatic cancer. Further investigation identified potential protein-protein interactions and transcription factors associated with these markers. The IHC staining of PDAC tissue samples showed an increased expression of VISTA, CD68, and CD8A in pancreatic cancer tissues. Moreover, we found correlations between the expression levels of these markers and certain clinicopathological features of the patients. Additionally, the survival analysis revealed that high expression of CD8 was associated with better disease-specific survival and progression-free survival in PDAC patients. Conclusion These findings highlight the potential of CD8, CD68, and VISTA as diagnostic and prognostic indicators in PDAC.
Collapse
Affiliation(s)
- Fereshteh Rezagholizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Talebi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), Tehran, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hamideh Sadat Hosseini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Aram Nazari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Mollazadeh Ghomi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyede Mahtab Kamrani Mousavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Haeri Moghaddam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Farhangnia P, Ghomi SM, Akbarpour M, Delbandi AA. Bispecific antibodies targeting CTLA-4: game-changer troopers in cancer immunotherapy. Front Immunol 2023; 14:1155778. [PMID: 37441075 PMCID: PMC10333476 DOI: 10.3389/fimmu.2023.1155778] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Antibody-based cancer immunotherapy has become a powerful asset in the arsenal against malignancies. In this regard, bispecific antibodies (BsAbs) are a ground-breaking novel approach in the therapy of cancers. Recently, BsAbs have represented a significant advancement in improving clinical outcomes. BsAbs are designed to target two different antigens specifically. Over a hundred various BsAb forms currently exist, and more are constantly being manufactured. An antagonistic regulator of T cell activation is cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or CD152, a second counter-receptor for the B7 family of co-stimulatory molecules was introduced in 1996 by Professor James P. Allison and colleagues. Contrary to the explosive success of dual immune checkpoint blockade for treating cancers, a major hurdle still yet persist is that immune-related adverse events (irAEs) observed by combining immune checkpoint inhibitors (ICIs) or monoclonal antibodies such as ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1). A promising strategy to overcome this hurdle is using BsAbs. This article will summarize BsAbs targeting CTLA-4, their applications in cancer immunotherapy, and relevant clinical trial advances. We will also discuss the pre-clinical rationale for using these BsAbs, and provide the current landscape of the field.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gu Y, Lin X, Dong Y, Wood G, Seidah NG, Werstuck G, Major P, Bonert M, Kapoor A, Tang D. PCSK9 facilitates melanoma pathogenesis via a network regulating tumor immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:2. [PMID: 36588164 PMCID: PMC9806914 DOI: 10.1186/s13046-022-02584-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND PCSK9 regulates cholesterol homeostasis and promotes tumorigenesis. However, the relevance of these two actions and the mechanisms underlying PCSK9's oncogenic roles in melanoma and other cancers remain unclear. METHODS PCSK9's association with melanoma was analysed using the TCGA dataset. Empty vector (EV), PCSK9, gain-of-function (D374Y), and loss-of-function (Q152H) PCSK9 mutant were stably-expressed in murine melanoma B16 cells and studied for impact on B16 cell-derived oncogenesis in vitro and in vivo using syngeneic C57BL/6 and Pcsk9-/- mice. Intratumoral accumulation of cholesterol was determined. RNA-seq was performed on individual tumor types. Differentially-expressed genes (DEGs) were derived from the comparisons of B16 PCSK9, B16 D374Y, or B16 Q152H tumors to B16 EV allografts and analysed for pathway alterations. RESULTS PCSK9 expression and its network negatively correlated with the survival probability of patients with melanoma. PCSK9 promoted B16 cell proliferation, migration, and growth in soft agar in vitro, formation of tumors in C57BL/6 mice in vivo, and accumulation of intratumoral cholesterol in a manner reflecting its regulation of the low-density lipoprotein receptor (LDLR): Q152H, EV, PCSK9, and D374Y. Tumor-associated T cells, CD8 + T cells, and NK cells were significantly increased in D374Y tumors along with upregulations of multiple immune checkpoints, IFNγ, and 143 genes associated with T cell dysfunction. Overlap of 36 genes between the D374Y DEGs and the PCSK9 DEGs predicted poor prognosis of melanoma and resistance to immune checkpoint blockade (ICB) therapy. CYTH4, DENND1C, AOAH, TBC1D10C, EPSTI1, GIMAP7, and FASL (FAS ligand) were novel predictors of ICB therapy and displayed high level of correlations with multiple immune checkpoints in melanoma and across 30 human cancers. We observed FAS ligand being among the most robust biomarkers of ICB treatment and constructed two novel and effective multigene panels predicting response to ICB therapy. The profiles of allografts produced by B16 EV, PCSK9, D374Y, and Q152H remained comparable in C57BL/6 and Pcsk9-/- mice. CONCLUSIONS Tumor-derived PCSK9 plays a critical role in melanoma pathogenesis. PCSK9's oncogenic actions are associated with intratumoral cholesterol accumulation. PCSK9 systemically affects the immune system, contributing to melanoma immune evasion. Novel biomarkers derived from the PCSK9-network effectively predicted ICB therapy responses.
Collapse
Affiliation(s)
- Yan Gu
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Xiaozeng Lin
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Ying Dong
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Geoffrey Wood
- grid.34429.380000 0004 1936 8198Department of Pathology, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Nabil G. Seidah
- grid.511547.30000 0001 2106 1695Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W 1R7 Canada
| | - Geoff Werstuck
- grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Pierre Major
- grid.25073.330000 0004 1936 8227Department of Oncology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Michael Bonert
- grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Anil Kapoor
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| | - Damu Tang
- grid.416721.70000 0001 0742 7355Urological Cancer Center for Research and Innovation (UCCRI), T3310, St. Joseph’s Hospital, 50 Charlton Ave East, Hamilton, ON L8N 4A6 Canada ,grid.25073.330000 0004 1936 8227Department of Surgery, McMaster University, Hamilton, ON L8S 4K1 Canada ,grid.416721.70000 0001 0742 7355The Research Institute of St Joe’s Hamilton, G344, St. Joseph’s Hospital, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
6
|
Panahi M, Rezagholizadeh F, Mollazadehghomi S, Farhangnia P, Niya MHK, Ajdarkosh H, Tameshkel FS, Heshmati SM. The association between CD3+ and CD8+tumor-infiltrating lymphocytes (TILs) and prognosis in patients with pancreatic adenocarcinoma. Cancer Treat Res Commun 2023; 35:100699. [PMID: 36996584 DOI: 10.1016/j.ctarc.2023.100699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PDAC), with more than 250,000 deaths each year, is the eighth leading cause of death worldwide, with a five-year survival of less than 5% and a median recurrence time between 5 and 23 months. The association between PDAC and CD3+/CD8+ tumor-infiltrating lymphocytes (TILs) and the extent of tumor spread and clinical outcomes has been recently shown. This study aimed to determine and compare the density of TILs and their association with disease prognosis in patients with PDAC. MATERIALS AND METHODS In this study, we collected PDAC tissues and corresponding adjacent normal tissues from 64 patients with TIL-positive PDAC. The immunohistochemistry method was used for the detection of the expression levels of CD3+ and CD8+ TILs in PDAC tissues. Also, the completed follow-up history was evaluated for at least five years. RESULTS The frequency of intratumoral and peritumoral TILs was 20 (31.2%) and 44 (68.8%), respectively. The mean density of CD3+ TILs and CD8+ TILs was 67.73%±20.17% and 69.45%±17.82%, respectively. The density of CD3+ TILs and CD8+ TILs was not associated with overall survival nor metastasis-free survival of the patients and tumor grade. However, the density of TILs was significantly lower in those patients who experienced tumor recurrence than those without this recurrence. CONCLUSION TILs density was high in patients with PDAC. The density of both CD3+ and CD8+ TILs was significantly lower in patients who experienced tumor recurrence. Thus, this study suggests that tracking and determining the density of CD3+ and CD8+ TILs might be effective in predicting PDAC recurrence.
Collapse
|