1
|
Yang L, Yang L, Cai Y, Luo Y, Wang H, Wang L, Chen J, Liu X, Wu Y, Qin Y, Wu Z, Liu N. Natural mycotoxin contamination in dog food: A review on toxicity and detoxification methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114948. [PMID: 37105098 DOI: 10.1016/j.ecoenv.2023.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Nowadays, the companion animals (dogs or other pets) are considered as members of the family and have established strong emotional relationships with their owners. Dogs are long lived compared to food animals, so safety, adequacy, and efficacy of dog food is of great importance for their health. Cereals, cereal by-products as well as feedstuffs of plant origin are commonly employed food resources in dry food, yet are potential ingredients for mycotoxins contamination, so dogs are theoretically more vulnerable to exposure when consumed daily. Aflatoxins (AF), deoxynivalenol (DON), fumonisins (FUM), ochratoxin A (OTA), and zearalenone (ZEA) are the most frequent mycotoxins that might present in dog food and cause toxicity on the growth and metabolism of dogs. An understanding of toxicological effects and detoxification methods (physical, chemical, or biological approaches) of mycotoxins will help to improve commercial ped food quality, reduce harm and minimize exposure to dogs. Herein, we outline a description of mycotoxins detected in dog food, toxicity and clinical findings in dogs, as well as methods applied in mycotoxins detoxification. This review aims to provide a reference for future studies involved in the evaluation of the risk, preventative strategies, and clear criteria of mycotoxins for minimizing exposure, reducing harm, and preventing mycotoxicosis in dog.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Lihan Yang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifei Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Li Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming Liu
- College of Animal Science and Technology, Shandong Agricultural University, China
| | - Yingjie Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Schollenberger M, Müller HM, Rüfle M, Suchy S, Plank S, Drochner W. Natural occurrence of 16 fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 2006; 161:43-52. [PMID: 16389484 DOI: 10.1007/s11046-005-0199-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 09/19/2005] [Indexed: 11/30/2022]
Abstract
A total of 220 samples comprising cereals, cereal byproducts, corn plants and corn silage as well as non-grain based feedstuffs was randomly collected during 2000 and 2001 from sources located in Germany and analysed for 16 Fusarium toxins. The trichothecenes scirpentriol (SCIRP), 15-monoacetoxyscirpenol (MAS), diacetoxyscirpenol (DAS), T-2 tetraol, T-2 triol, HT-2 and T-2 toxin (HT-2, T-2), neosolaniol (NEO), deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivealenol (15-ADON), nivalenol (NIV) and fusarenon-X (FUS-X) were determined by gas chromatography/mass spectrometry. Zearalenone (ZEA) and alpha- and beta-zearalenol (alpha- and beta-ZOL) were analysed by high performance liquid chromatography with fluorescence and UV-detection. Detection limits ranged between 1 and 19 microg/kg. Out of 125 samples of a group consisting of wheat, oats, corn, corn byproducts, corn plants and corn silage only two wheat samples did not contain any of the toxins analysed. Based on 125 samples the incidences were at 2-11% for DAS, NEO, T-2 Triol, FUS-X, alpha- and beta-ZOL, at 20-22% for SCIRP, MAS, T-2 tetraol and 3-ADON, at 44-74% for HT-2, T-2, 15-ADON, NIV and ZEA, and at 94% for DON. Mean levels of positive samples were between 6 and 758 microg/kg. Out of 95 samples of a group consisting of hay, lupines, peas, soya meal, rapeseed meal and other oil-seed meals, 64 samples were toxin negative. DAS, T-2 triol, NEO and FUS-X were not detected in any sample. The incidences of DON and ZEA were at 14 and 23% respectively, those of the other toxins between 1-4%, mean levels of positive samples were between 5 and 95 microg/kg.
Collapse
Affiliation(s)
- Margit Schollenberger
- Institute of Animal Nutrition, Hohenheim University, Emil-Wolff-Str. 10, D-70599 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Cavret S, Lecoeur S. Fusariotoxin transfer in animal. Food Chem Toxicol 2006; 44:444-53. [PMID: 16214283 DOI: 10.1016/j.fct.2005.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 08/24/2005] [Accepted: 08/24/2005] [Indexed: 11/18/2022]
Abstract
Mycotoxin fusariotoxins, essentially represented by trichothecenes, zearalenone and fumonisins, are widely scattered in cereals and their products. Human and animals are particularly concerned by toxicity consecutive to oral chronic exposure. Human exposure can be direct via cereals or indirect via products of animals having eaten contaminated feed. As this alimentary risk is considered as a major problem in public health, it is thus of great importance to determine bioavailability, metabolic pathways and distribution of these mycotoxins in animal and human organism. Most studies indicate that fusariotoxins can be rapidly absorbed in the small intestine but the mechanisms involved remain unclear. Except NIV, fusariotoxins can be partly metabolised into more hydrophilic molecules in digestive tract or liver. Fumonisins present different behaviour as they seem very few and slowly absorbed and metabolised. The main part of absorbed fusariotoxins shows a rapid elimination within 24h after ingestion, followed by a slower excretion of small amounts. However, traces of fusariotoxins or their derivates can be found in animal products. This manuscript, reviewing literature published on fusariotoxin transfer, highlights that too little data are available to correctly appreciate fusariotoxin transfer in organism. Further studies focusing on mechanisms involved in the transfer are needed before clarifying risk assessment for human health.
Collapse
Affiliation(s)
- S Cavret
- UMR INRA-DGER Métabolisme et Toxicologie Comparée des Xénobiotiques, Ecole Nationale Vétérinaire de Lyon, Marcy l'Etoile, France.
| | | |
Collapse
|
4
|
Labuda R, Parich A, Berthiller F, Tancinová D. Incidence of trichothecenes and zearalenone in poultry feed mixtures from Slovakia. Int J Food Microbiol 2005; 105:19-25. [PMID: 16046021 DOI: 10.1016/j.ijfoodmicro.2005.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 05/31/2005] [Accepted: 06/09/2005] [Indexed: 11/29/2022]
Abstract
A total of 50 samples of poultry feed mixtures of Slovakian origin were analyzed for eight toxicologically significant Fusarium mycotoxins, namely zearalenone (ZON), A-trichothecenes: diacetoxyscirpenol (DAS), T-2 toxin (T-2) and HT-2 toxin (HT-2) and B-trichothecenes: deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON) and nivalenol (NIV). The A-trichothecenes and the B-trichothecenes were detected by means of high pressure liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS) and gas chromatography electron capture detection (GC-ECD), respectively. Reversed phase-high performance liquid chromatography with a fluorescence detector (RP-HPLC-FLD) was used for ZON detection. The most frequent mycotoxin detected was T-2, which was found in 45 samples (90%) in relatively low concentrations ranging from 1 to 130 microg kg(-1) (average 13 microg kg(-1)), followed by ZON that was found in 44 samples (88%) in concentrations ranging from 3 to 86 microg kg(-1) (average 21 microg kg(-1)). HT-2 and DON were detected in 38 (76%) and 28 (56%) samples, respectively, in concentrations of 2 to 173 (average 18 microg kg(-1)) for HT-2 and 64 to 1230 microg kg(-1) sample (average 303 microg kg(-1)) for DON. The acetyl-derivatives of DON were in just four samples, while NIV was not detected in any of the samples investigated. In as many as 22 samples (44%), a combination of four simultaneously co-occurring mycotoxins, i.e. T-2, HT-2, ZON and DON, was revealed. Despite the limited number of samples investigated during this study poultry feed mixtures may represent a risk from a toxicological point of view and should be regarded as a potential source of the Fusarium mycotoxins in Central Europe. This is the first reported study dealing with zearalenone and trichothecene contamination of poultry mixed feeds from Slovakia.
Collapse
Affiliation(s)
- Roman Labuda
- Department of Microbiology, Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Nitra, Slovak Republic.
| | | | | | | |
Collapse
|
5
|
Schollenberger M, Müller HM, Rüfle M, Suchy S, Planck S, Drochner W. Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. Int J Food Microbiol 2005; 97:317-26. [PMID: 15582742 DOI: 10.1016/j.ijfoodmicro.2004.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 04/22/2004] [Accepted: 05/05/2004] [Indexed: 01/28/2023]
Abstract
A total of 219 samples of foodstuffs of plant origin, consisting of grain-based food, pseudocereals and gluten-free food as well as vegetables, fruits, oilseeds and nuts, were randomly collected during 2000 and 2001 in food and health food stores. A spectra of 13 trichothecene toxins including diacetoxyscirpenol (DAS), 15-monoacetoxyscirpenol (MAS), scirpentriol (SCIRP), T-2 and HT-2 toxins (T-2, HT-2), T-2 triol, T-2 tetraol, neosolaniol (NEO) of the A-type as well as deoxynivalenol (DON), 3- and 15-acetyl-DON (3-, 15-ADON), nivalenol (NIV), and fusarenon-X (FUS-X) of the B-type were determined by gas chromatography/mass spectrometry. Analysis of zearalenone (ZEA), alpha- and beta-zearalenol (alpha- and beta-ZOL) was made by high-performance liquid chromatography with fluorescence and UV-detection. Detection limits ranged between 1 and 19 microg/kg. Out of 84 samples of cereal-based including gluten-free foods, 60 samples were positive for at least one of the toxins DON, 15-ADON, 3-ADON, NIV, T-2, HT-2, T-2 tetraol and ZEA, with incidences at 57%, 13%, 1%, 10%, 12%, 37%, 4% and 38%, respectively, whereas SCIRP and its derivatives MAS and DAS, T-2 triol, Fus-X as well as alpha- and beta-ZOL were not detected in any sample of this subgroup. Contents of DON ranged between 8 and 389 microg/kg, for all other toxins determined concentrations were below 100 microg/kg. The pseudocereals amaranth, quinoa and buckwheat were free of the toxins investigated. Ten of 85 samples of vegetables and fruits were toxin positive. ZEA and the type A trichothecenes MAS, SCIRP, DAS, HT-2 were detected in 7, 3, 2, 1 and 1 samples, respectively. Out of 35 samples of oilseeds and nuts, 7 samples were toxin positive. HT-2, T-2 and ZEA were detected in 4, 3 and 4 samples, respectively. In vegetables and fruits as well as in oilseeds and nuts, toxin levels were below 50 microg/kg. None of the B-type trichothecenes analysed was found for both subgroups.
Collapse
Affiliation(s)
- Margit Schollenberger
- Institute of Animal Nutrition, Hohenheim University, Emil-Wolff-Str. 10, Stuttgart 70599, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Brenner J, Perl S, Lahav D, Garazi S, Oved Z, Shlosberg A, David D. An unusual outbreak of malignant catarrhal fever in a beef herd in Israel. ACTA ACUST UNITED AC 2002; 49:304-7. [PMID: 12241033 DOI: 10.1046/j.1439-0450.2002.00578.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malignant catarrhal fever (MCF. corrizza contagiosa) is an invariably fatal communicable disease in cattle, whose causative agent is the ovine herpes virus-2, or the alcelaphine herpes virus-1. In one feed-lot family farm, 34 calves out of 100 became ill at the rate of one to four calves per week, and all of them subsequently died over a period of 4 months. Most of the initial cases were manifested clinically as the head and eye form, but most of the entire clinical spectrum of forms (the respiratory, intestinal and nervous forms) characteristic for MCF were observed as this epidemic progressed. Very few calves died without showing any specific signs of MCF. Pathological examinations revealed characteristic obliterative arteriovasculitis in the brain of calves with nervous signs, typical of MCF. Polymerase chain reaction (PCR) testing revealed 100% homology between the 238 bp hemi-nested PCR fragment and the ovine herpes virus-2 sequences. Based on the clinical signs, epidemiological data, pathological, and histopathological findings, and the PCR results, it was concluded that MCF occurred on the farm. The fact that sheep and goats were housed in close proximity on the same farm reinforced this diagnosis.
Collapse
Affiliation(s)
- J Brenner
- Ruminants Neonatal Prevention Unit, Kimron Veterinary Institute, Bet Dagan, Israel.
| | | | | | | | | | | | | |
Collapse
|
7
|
Schollenberger M, Jara HT, Suchy S, Drochner W, Müller HM. Fusarium toxins in wheat flour collected in an area in southwest Germany. Int J Food Microbiol 2002; 72:85-9. [PMID: 11843417 DOI: 10.1016/s0168-1605(01)00627-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A total of 60 samples of wheat flour were collected during the first 6 months of 1999 from mills and food stores in an area in southwest Germany. Samples included whole-grain and two types of white flour with these three groups characterized by a high, medium and low ash content. The contents of deoxynivalenol (DON), nivalenol (NIV), 3- and 15-acetyldeoxynivalenol, HT-2 toxin (HT-2), T-2 toxin (T-2) and fusarenon-X (FUS-X) were determined by gas chromatography/mass spectrometry, and those of zearalenone (ZEA), alpha- and beta-zearalenol (alpha- and beta-ZOL) by high performance liquid chromatography with fluorescence detection. FUS-X, alpha- and beta-ZOL were not detected in any sample. Based on incidence and level, DON was the predominant toxin followed by NIV and ZEA for all three flour types. The overall degree of toxin contamination was lower with decreasing ash content. This suggests a localization of the toxins analyzed primarily in the outer parts of the original wheat kernels. The median DON content was significantly (P<0.05) higher for wheat flour originating from wheat of conventional than of organic production.
Collapse
|