1
|
Brown KL, Ganswindt A, Steenkamp G, Tordiffe ASW. Responses to Reduced Feeding Frequency in Captive-Born Cheetahs ( Acinonyx jubatus): Implications for Behavioural and Physiological Stress and Gastrointestinal Health. Animals (Basel) 2023; 13:2783. [PMID: 37685047 PMCID: PMC10486355 DOI: 10.3390/ani13172783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Unnatural diet composition and frequent feeding regimes may play an aetiological role in the multiple diseases prevalent in captive cheetahs. This study investigated the responses of captive-born (hand-reared) cheetahs (n = 6) to a reduced feeding frequency schedule distinguished by offering larger quantities of food less frequently. The study cheetahs were fed four once-daily meals per week during the 3-week treatment period, followed by a 3-week control period in which they were fed two daily rations six days a week. Total weekly food intake was maintained throughout the study. Variations in behaviour, faecal consistency score (FCS), and faecal glucocorticoid metabolite concentration were measured. Less frequent feeding resulted in higher FCS (p < 0.01) and locomotory behaviour (p < 0.05) among the studied cheetahs. Faecal glucocorticoid metabolite concentration demonstrated an initial acute stress response to the change in feeding frequency (p < 0.05) and subsequent adaptation. The results of the FCS analysis suggest that the more natural feeding pattern could have benefited the studied cheetahs' gastrointestinal health without a significant behavioural or physiological stress response overall to the change in feeding frequency.
Collapse
Affiliation(s)
- Kelsey Lee Brown
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - André Ganswindt
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, Mammal Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Gerhard Steenkamp
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Adrian Stephen Wolferstan Tordiffe
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| |
Collapse
|
2
|
González F, Carelli A, Komarcheuski A, Uana M, do Prado RM, Rossoni D, Gomes M, Vasconcellos R. Yeast Cell Wall Compounds on The Formation of Fermentation Products and Fecal Microbiota in Cats: An In Vivo and In Vitro Approach. Animals (Basel) 2023; 13:637. [PMID: 36830424 PMCID: PMC9951743 DOI: 10.3390/ani13040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 02/15/2023] Open
Abstract
The effects of yeast cell wall compounds (YCWs) being added to cat food on hindgut fermentation metabolites and fecal microbiota were assessed in in vivo Experiment 1 (Exp. 1) and in vitro Experiments 2 and 3 (Exp. 2 and 3). In Exp. 1, the cats' diets were supplemented with two dietary concentrations (46.2 and 92.4 ppm) of YCWs (YCW-15 and YCW-30, respectively), and a negative control diet with no compound in three groups (six cats per group) was used to assess the fecal score, pH, digestibility, fermentation products, and microbiota. In Exp. 2, feces from the cats that were not supplemented with YCWs (control) were used as an inoculum. A blend of pectin, amino acids, and cellulose was used as a substrate, and the YCW compound was added at two levels (5 and 10 mg). In Exp. 3, feces from cats fed YCWs were used as an inoculum to test three different substrates (pectin, amino acids, and cellulose). In Exp. 2 and 3, the gas production, pH, and fermentation products (ammonia, SCFAs, and BCFAs) were assessed. YCW-30 resulted in a higher digestibility coefficient of the crude protein, organic matter (OM) (p < 0.05), and energy of the diet (p < 0.10). Regarding the fermentation products, YCW-15 showed a trend toward higher concentrations of propionate, acetate, lactate, ammonia, isobutyrate, and valerate, while YCW-30 showed a trend (p < 0.10) toward higher levels of butyrate and pH values. The bacteroidia class and the genus Prevotella were increased by using YCW-30 and the control. At the gender level, decreased (p < 0.01) Megasphaera was observed with YCW inclusion. The microbiota differed (p < 0.01) among the groups in their Shannon indexes. For beta diversity, YCW-30 showed higher indexes (p = 0.008) than the control. The microbiota metabolic profile differed in the pathway CENTFERM-PWY; it was more expressed in YCW-30 compared to the control. In Exp. 2, the YCWs showed a higher ratio (p = 0.006) of the fermentation products in the treatments with additives with a trend towards a high dose of the additive (10 mg). In Exp. 3, the effects of the substrates (p < 0.001), but not of the YCWs, on the fermentation products were observed, perhaps due to the low dietary concentrations we used. However, the marked responses of the fermentation products to the substrates validated the methodology. We could conclude that the YCWs, even at low dietary concentrations, affected fecal SCFA production, reduced the fecal pH, and modulated the fecal microbiota in the cats. These responses were more pronounced under in vitro conditions.
Collapse
Affiliation(s)
- Fernando González
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of São Paulo (USP)—São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 13690-970, Brazil
| | - Amanda Carelli
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Alina Komarcheuski
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Mayara Uana
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Rodolpho Martin do Prado
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Diogo Rossoni
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| | - Márcia Gomes
- Department of Internal Medicine, College of Veterinary Medicine and Animal Science, University of São Paulo (USP)—São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 13690-970, Brazil
| | - Ricardo Vasconcellos
- Department of Animal Science, State University of Maringá, Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
| |
Collapse
|
3
|
Inclusion of small intestinal absorption and simulated mucosal surfaces further improve the Mucosal Simulator of the Canine Intestinal Microbial Ecosystem (M-SCIME™). Res Vet Sci 2021; 140:100-108. [PMID: 34418788 DOI: 10.1016/j.rvsc.2021.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022]
Abstract
While a large set of in vitro models are available to study the effects of specific food ingredients (e.g. pre- and probiotics) on the human gut microbiome, the availability of such models for companion animals is limited. Since improving gut health of such animals is an emerging research field, the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME™) was recently developed and validated with in vivo data. The current study presents a further improvement of this model by using an alternative method for feed preparation, i.e. by administering digestive enzymes to mimic upper gastro-intestinal digestion followed by a dialysis approach to mimic small intestinal absorption. As opposed to the previously implemented method, this resulted in a more optimal simulation of protein digestion and absorption. Further, upon entrance in the colon, increased production of the health-promoting butyrate and lower levels of Lactobacillus spp. and Bifidobacterium spp. were observed, which corresponded better with obtained in vivo data. A second model improvement consisted of the implementation of a mucosal environment to not only simulate luminal but also mucosal microbiota. In consistency with the human model for which this technology was previously validated, it was found that for all canine microbiota mucin beads were enriched with members of the Lachnospiraceae (~ Clostridium cluster XIVa), a family containing multiple well-known butyrate producers. The SCIME™ was thus upgraded to a so-called Mucosal SCIME™ (M-SCIME™). In conclusion, the current study presents improvements of the SCIME™, further increasing the relevance of obtained data with this in vitro model for dogs.
Collapse
|
4
|
Wambacq W, Rybachuk G, Jeusette I, Rochus K, Wuyts B, Fievez V, Nguyen P, Hesta M. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet. BMC Vet Res 2016; 12:130. [PMID: 27353524 PMCID: PMC4924337 DOI: 10.1186/s12917-016-0752-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023] Open
Abstract
Background Research in cats has shown that increased fermentation-derived propionic acid and its metabolites can be used as alternative substrates for gluconeogenesis, thus sparing amino acids for other purposes. This amino acid sparing effect could be of particular interest in patients with kidney or liver disease, where this could reduce the kidneys’/liver’s burden of N-waste removal. Since dogs are known to have a different metabolism than the obligatory carnivorous cat, the main objective of this study was to assess the possibility of altering amino acid metabolism through intestinal fermentation in healthy dogs. This was studied by supplementing a low-protein diet with fermentable fibres, hereby providing an initial model for future studies in dogs suffering from renal/liver disease. Results Eight healthy dogs were randomly assigned to one of two treatment groups: sugar beet pulp and guar gum mix (SF: soluble fibre, estimated to mainly stimulate propionic acid production) or cellulose (IF: insoluble fibre). Treatments were incorporated into a low-protein (17 %) extruded dry diet in amounts to obtain similar total dietary fibre (TDF) contents for both diets (9.4 % and 8.2 % for the SF and IF diet, respectively) and were tested in a 4-week crossover feeding trial. Apparent faecal nitrogen digestibility and post-prandial fermentation metabolites in faeces and plasma were evaluated. Dogs fed the SF diet showed significantly higher faecal excretion of acetic and propionic acid, resulting in a higher total SCFA excretion compared to IF. SF affected the three to six-hour postprandial plasma acylcarnitine profile by significantly increasing AUC of acetyl-, propionyl-, butyryl- + isobutyryl-, 3-OH-butyryl-, 3-OH-isovaleryl- and malonyl-L-carnitine. Moreover, the amino acid plasma profile at that time was modified as leucine + isoleucine concentrations were significantly increased by SF, and a similar trend for phenylalanine and tyrosine’s AUC was found. Conclusion These results indicate that guar gum and sugar beet pulp supplementation diminishes postprandial use of amino acids favoring instead the use of short-chain fatty acids as substrate for the tricarboxylic acid (TCA) cycle. Further research is warranted to investigate the amino acid sparing effect of fermentable fibres in dogs with kidney/liver disease.
Collapse
Affiliation(s)
- Wendy Wambacq
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium
| | - Galena Rybachuk
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium
| | - Isabelle Jeusette
- Department of Research and Development, Affinity Petcare SA, Sant Cugat Nord Office Park, Xavier Cugat Square, Building D, 08174, Sant Cugat del Valles, Barcelona, Spain
| | - Kristel Rochus
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium
| | - Brigitte Wuyts
- Laboratory of Metabolic Disorders, Department of Clinical Chemistry, Microbiology and Immunology; Ghent University Hospital, De Pintelaan 185, B-9000, Ghent, Belgium
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Proefhoevestraat 10, 9090, Melle, Belgium
| | - Patrick Nguyen
- Nutrition and Endocrinology Unit, Nantes-Atlantic National College of Veterinary Medicine, UNAM Université, Food Science and Engineering-ONIRIS, Site de la Chantrerie, BP 40706, 44307, Nantes Cedex 3, France
| | - Myriam Hesta
- Laboratory of Animal Nutrition, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium.
| |
Collapse
|
5
|
Abstract
Domestic cats are obligate carnivores and in this light hindgut fermentation has been considered unimportant in this species. However, a diverse microbiota has been found in the small and large intestines of domestic cats. Additionally, in vitro and in vivo studies support the hypothesis that microbial fermentation is significant in felines with potential benefits to the host. Results on microbiota composition and microbial counts in different regions of the feline gastrointestinal tract are compiled, including a description of modulating host and technical factors. Additionally, the effects of dietary fibre supplementation on the microbiota composition are described. In a second section, in vitro studies, using inocula from fresh feline faeces and focusing on the fermentation characteristics of diverse plant substrates, are described. In vivo studies have investigated the effects of dietary fibre on a broad range of physiological outcomes. Results of this research, together with studies on effects of plant fibre on colonic morphology and function, protein and carbohydrate metabolism, and the effects of plant fibre on disease conditions that require a decrease in dietary protein intake, are shown in a third section of the present review. Conclusively, for fructans and beet pulp, for example, diverse beneficial effects have been demonstrated in the domestic cat. Both dietary fibre sources are regularly used in the pet food industry. More research is warranted to reveal the potential benefits of other fibre sources that can be used on a large scale in feline diets for healthy and diseased cats.
Collapse
|
6
|
Whitehouse-Tedd KM, Lefebvre SL, Janssens GPJ. Dietary factors associated with faecal consistency and other indicators of gastrointestinal health in the captive cheetah (Acinonyx jubatus). PLoS One 2015; 10:e0120903. [PMID: 25830636 PMCID: PMC4382097 DOI: 10.1371/journal.pone.0120903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/10/2015] [Indexed: 11/28/2022] Open
Abstract
Gastrointestinal diseases pose significant risks to captive cheetah survival and welfare. Multiple factors are thought to be associated with these diseases, but to date a comprehensive epidemiological survey of disease risk factors has not been conducted. A survey of diet and health parameters was completed for 184 captive cheetahs in 86 international facilities. Comparisons were made among dietary factors with respect to disease status and observed faecal consistency, incidence of vomiting and diarrhoea in the past 4 weeks. Extremely dry faeces were most common in cheetahs fed carcasses, but was still of low incidence (15%). Contrastingly, cheetahs fed commercially prepared diets had the highest prevalence of liquid faeces “always” or “often” (9%). Cheetahs fed raw meat diets had the highest prevalence of soft faeces with no shape (22%), as well as of firm and dry faeces (40%). No broad category of diet exerted any influence on the health parameters investigated. However, feeding of ribs at least once per week reduced the odds of diarrhoea (P = 0.020) and feeding of long bones (limbs) at least once per week was associated with a lower odds of vomiting (P = 0.008). Cheetahs fed muscle meat at least once per week had reduced odds of suffering from chronic gastritis (P = 0.005) or non-specific gastrointestinal disease (P < 0.001). The only factor identified as increasing the odds of chronic gastritis was feeding of horse “often” or “always” (P = 0.023). The findings of the current study build on existing empirical research to support a recommendation towards a greater inclusion of skeletal components. Current husbandry guidelines advocating the use of supplemented raw meat diets are likewise supported, but the use of horse meat, as well as commercially prepared diets for captive cheetahs, warrants caution until further research is conducted.
Collapse
Affiliation(s)
- Katherine M. Whitehouse-Tedd
- Cheetah Outreach, Somerset West, Western Cape, South Africa
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, United Kingdom
- * E-mail:
| | - Sandra L. Lefebvre
- Banfield Applied Research and Knowledge Team, Banfield Pet Hospital, Portland, Oregon, United States of America
| | - Geert P. J. Janssens
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
7
|
Dietary supplementation of propionylated starch to domestic cats provides propionic acid as gluconeogenic substrate potentially sparing the amino acid valine. J Nutr Sci 2014; 3:e16. [PMID: 25191608 PMCID: PMC4153013 DOI: 10.1017/jns.2014.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/01/2014] [Accepted: 06/18/2014] [Indexed: 12/03/2022] Open
Abstract
In strict carnivorous domestic cats, a metabolic competition arises between the need to
use amino acids for gluconeogenesis and for protein synthesis both in health and disease.
The present study investigated the amino acid-sparing potential of propionic acid in cats
using dietary propionylated starch (HAMSP) supplementation. A total of thirty cats were
fed a homemade diet, supplemented with either HAMSP, acetylated starch (HAMSA) or celite
(Control) for three adaptation weeks. Propionylated starch was hypothesised to provide
propionic acid as an alternative gluconeogenic substrate to amino acids, whereas acetic
acid from HAMSA would not provide any gluconeogenic benefit. Post-adaptation, a 5-d total
faecal collection was carried out to calculate apparent protein digestibility
coefficients. Fresh faecal and blood samples were collected to analyse fermentation
endproducts and metabolites. The apparent protein digestibility coefficients did not
differ between supplements (P = 0·372) and were not affected by the
protein intake level (P = 0·808). Faecal propionic acid concentrations
were higher in HAMSP than in HAMSA (P = 0·018) and Control
(P = 0·003) groups, whereas concentrations of ammonia
(P = 0·007) were higher in HAMSA than in HAMSP cats. Tendencies for or
higher propionylcarnitine concentrations were observed in HAMSP compared with HAMSA
(P = 0·090) and Control (P = 0·037) groups, and for
tiglyl- + 3-methylcrotonylcarnitine concentrations in HAMSP as compared with Control
(P = 0·028) cats. Methylmalonylcarnitine concentrations did not differ
between groups (P = 0·740), but were negatively correlated with the
protein intake level (r –0·459, P = 0·016). These
results suggest that HAMSP cats showed more saccharolytic fermentation patterns than those
supplemented with HAMSA, as well as signs of sparing of valine in cats with a sufficient
protein intake.
Collapse
|