1
|
Hartinger T, Grabher L, Pacífico C, Angelmayr B, Faas J, Zebeli Q. Short-term exposure to the mycotoxins zearalenone or fumonisins affects rumen fermentation and microbiota, and health variables in cattle. Food Chem Toxicol 2022; 162:112900. [PMID: 35247503 DOI: 10.1016/j.fct.2022.112900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
Zearalenone (ZEN) and fumonisins (FUM) jeopardize fertility and health in cattle; yet, their toxigenic effects on rumen health and microbiota, both being crucial for animal health, are not clarified. This study determined the effects of a short-term exposure to ZEN or FUM on the rumen ecosystem, and further evaluated acute implications on health parameters. Six cows were fed a basal diet with 40% grain (dry matter basis) and exposed to either 5 mg of ZEN or 20 mg of FUM daily for two consecutive days each, separated by a 7-days washout period. The exposure to ZEN or FUM led to a reduction of Lachnospiraceae and Prevotellaceae in the rumen. Similarly, ZEN lowered the ruminal pH and total short-chain fatty acid concentration, despite increased rumination activity of the cows. Fumonisins increased the number of observed features and significantly impacted β-diversity structure and metagenome predicted function. At the systemic level, FUM exposure suggested an immediate hepatotoxic effect, as evidenced by increased liver enzyme concentrations, which were accompanied by altered heart and respiratory rates. Similarly, ZEN increased the body temperature up to a mild fever. Concluding, short-term exposure to ZEN and FUM can harm the rumen ecosystem and acutely impair systemic health.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Lena Grabher
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Cátia Pacífico
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Barbara Angelmayr
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Johannes Faas
- BIOMIN Research Center, BIOMIN Holding GmbH, Technopark 1, 3430, Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
2
|
Vega MF, Diéguez SN, Riccio B, Tapia MO, González SN. Zearalenone Adsorbent Based on a Lyophilized Indigenous Bacterial Lactobacillus plantarum Strain as Feed Additive for Pigs: A Preliminary Study In Vivo. Curr Microbiol 2021; 78:1807-1812. [PMID: 33763737 DOI: 10.1007/s00284-021-02460-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
Feed contamination with naturally occurring mycotoxins is an unavoidable condition of significant concern in intensive productions. The presence of high concentrations of zearalenone >1 ppm in the diet can cause major reproductive disorders, particularly in swine. In order to reduce the consequences of intoxication, mycotoxin adsorbents are incorporated into feed. In the present study, zearalenone adsorption capacity of a lyophilized indigenous strain of Lactobacillus plantarum (L4; previously isolated from pig's rectal swabs) was first evaluated in vitro. A preliminary study in vivo was then performed in which the indigenous Lactobacillus plantarum strain was lyophilized and the powder obtained (L-L4) was incorporated into the diet of gilts two gilts received basal diet (control) and two received basal diet containing 2 g/kg L-L4 (treated). After an adaptation period, all the feed was contaminated with zearalenone at a dose of 0.93 mg ZEA/kg. Results from in vitro assay showed that L-L4 adsorbed 87.9% (SD 3.97) of zearalenone in 0.9% NaCl solution. In the in vivo exploratory study, higher daily weight gain and lower vulva area were observed in gilts that incorporated L-L4 to the diet. Additionally, higher zearalenone concentrations were eliminated in faeces from treated animals. The use of a product based on a lyophilized indigenous Lactobacillus strain to protect gilts from detrimental effects of zearalenone consumption has shown promising results so far. However, further studies are required in order to accurately assess its impact and evaluate doses according to different degrees of mycotoxins contamination.
Collapse
Affiliation(s)
- María F Vega
- Departamento de Tecnología y Calidad de los Alimentos, PROANVET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina.
| | - Susana N Diéguez
- Laboratorio de Toxicología CIVETAN - CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina.,CICPBA, La Plata, Buenos Aires, Argentina
| | - Belén Riccio
- Laboratorio de Toxicología CIVETAN - CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - María O Tapia
- Laboratorio de Toxicología CIVETAN - CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Buenos Aires, Argentina
| | - Silvia N González
- INBIOFAL - Facultad de Bioquímica Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
3
|
Dell’Orto V, Baldi G, Cheli F. Mycotoxins in silage: checkpoints for effective management and control. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Silage has a substantial role in ruminant nutrition. Silages as a source of mycotoxigenic fungi and mycotoxins merit attention. Fungal growth and mycotoxin production before and during storage are a well-known phenomenon, resulting in reduced nutritional value and a possible risk factor for animal health. Mycotoxin co-contamination seems to be unavoidable under current agricultural and silage-making practices. Multi-mycotoxin contamination in silages is of particular concern due to the potential additive or synergistic effects on animals. In regard to managing the challenge of mycotoxins in silages, there are many factors with pre- and post-harvest origins to take into account. Pre-harvest events are predominantly dictated by environmental factors, whereas post-harvest events can be largely controlled by the farmer. An effective mycotoxin management and control programme should be integrated and personalised to each farm at an integrative level throughout the silage production chain. Growing crops in the field, silage making practices, and the feed out phase must be considered. Economical and straightforward silage testing is critical to reach a quick and sufficiently accurate diagnosis of silage quality, which allows for ‘in field decision-making’ with regard to the rapid diagnosis of the quality of given forage for its safe use as animal feed. Regular sampling and testing of silage allow picking up any variations in mycotoxin contamination. The use of rapid methods in the field represents future challenges. Moreover, a proper nutritional intervention needs to be considered to manage mycotoxin-contaminated silages. At farm level, animals are more often exposed to moderate amounts of several mycotoxins rather than to high levels of a single mycotoxin, resulting more frequently in non-specific digestive and health status impairment. Effective dietary strategies to promote rumen health, coupled with the administration of effective and broad-spectrum mycotoxin detoxifiers, are essential to minimise the negative impact of mycotoxins.
Collapse
Affiliation(s)
- V. Dell’Orto
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| | - G. Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| | - F. Cheli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Celoria 10, 20134 Milano, Italy
| |
Collapse
|