1
|
Ibrahim D, El-sayed HI, Mahmoud ER, El-Rahman GIA, Bazeed SM, Abdelwarith AA, Elgamal A, Khalil SS, Younis EM, Kishawy ATY, Davies SJ, Metwally AE. Impacts of Solid-State Fermented Barley with Fibrolytic Exogenous Enzymes on Feed Utilization, and Antioxidant Status of Broiler Chickens. Vet Sci 2023; 10:594. [PMID: 37888546 PMCID: PMC10611247 DOI: 10.3390/vetsci10100594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
The present and future high demand of common cereals as corn and wheat encourage the development of feed processing technology that allows for the dietary inclusion of other cereals of low nutritional value in poultry feeding. Barley grains contain anti-nutritional factors that limit their dietary inclusion in the poultry industry. The treatment of barley with solid-state fermentation and exogenous enzymes (FBEs) provides a good alternative to common cereals. In this study, barley grains were subjected to solid-state microbial fermentation using Lactobacillus plantarum, Bacillus subtilis and exogenous fibrolytic enzymes. This study aimed to assess the impact of FBEs on growth, feed utilization efficiency, immune modulation, antioxidant status and the expression of intestinal barrier and nutrient transporter-related genes. One-day-old broiler chicks (Ross 308, n = 400) comprised four representative groups with ten replicates (10 chicks/replicate) and were fed corn-soybean meal basal diets with inclusions of FBEs at 0, 5, 10 and 15% for 38 days. Solid-state fermentation of barley grains with fibrolytic enzymes increased protein content, lowered crude fiber and reduced sugars compared to non-fermented barley gains. In consequence, the group fed FBEs10% had the superior feed utilization efficiency and body weight gain (increased by 4.7%) with higher levels of nutrient metabolizability, pancreatic digestive enzyme activities and low digesta viscosity. Notably, the group fed FBEs10% showed an increased villi height and a decreased crypt depth with a remarkable hyperactivity of duodenal glands. In addition, higher inclusion levels of FBEs boosted serum immune-related parameters and intestinal and breast muscle antioxidants status. Intestinal nutrient transporters encoding genes (GLUT-1, CAAT-1, LAT1 and PepT-1) and intestinal barriers encoding genes (MUC-2, JAM-2, occludin, claudins-1 and β-defensin 1) were upregulated with higher dietary FBEs levels. In conclusion, feeding on FBEs10% positively enhanced broiler chickens' performance, feed efficiency and antioxidant status, and boosted intestinal barrier nutrient transporters encoding genes.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hassainen I. El-sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Elsabbagh R. Mahmoud
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ghada I. Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Shefaa M. Bazeed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo P.O. Box 4942301, Egypt;
| | - Abdelwahab A. Abdelwarith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo P.O. Box 4942301, Egypt;
| | - Samah S. Khalil
- Department of biochemistry, drug information center, Zagazig University Hospitals, Zagazig University, Zagazig P.O. Box 44511, Egypt;
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (E.M.Y.)
| | - Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, H91 V8Y1 Galway, Ireland;
| | - Abdallah E. Metwally
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Comparing vibrational spectroscopic method with wet chemistry to determine nutritional and chemical changes in solid state fermented oats grain (Avena sativa L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Adsorptive Removal of Methylene Blue Dye Using Biowaste Materials: Barley Bran and Enset Midrib Leaf. J CHEM-NY 2022. [DOI: 10.1155/2022/4849758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, several biowaste materials are screened for adsorptive removal of methylene blue (MB) from synthetic water. Among the tested adsorbents, barley (Hordeum vulgare) bran (BB) and enset (Ensete ventricosum midrib leaf, EVML) were selected for further evaluation of MB (a model cationic dye) adsorption. Batch MB adsorption performance of BB and EVML adsorbents was significantly high in a wide pH range (4-9). The well fitting of experimental data with pseudosecond-order kinetic model suggests a monolayer adsorption of MB. The MB adsorption onto both adsorbents was fit well with the Langmuir isotherm model with maximum MB adsorption capacities of 63.2 mg/g (BB) and 35.5 mg/g (EVML). The biowaste materials exhibit considerable adsorption capacity for cationic dye (MB), perform well under acidic and basic conditions, and are reusable. Therefore, the use of these materials as adsorbents may have an environmental benefit in terms of the conversion of wastes into valuable materials. Further studies are suggested to investigate the performance of these adsorbents in a continuous mode using real wastewater.
Collapse
|
4
|
Li W, Cheng P, Zhang JB, Zhao LM, Ma YB, Ding K. Synergism of microorganisms and enzymes in solid-state fermentation of animal feed. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/133151/2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|