1
|
Abstract
The completely homozygous genetic background of doubled haploids (DHs) has many applications in breeding programs and research studies. Haploid induction and chromosome doubling of induced haploids are the two main steps of doubled haploid creation. Both steps have their own complexities. Chromosome doubling of induced haploids may happen spontaneously, although usually at a low rate. Therefore, artificial/induced chromosome doubling of haploid cells/plantlets is necessary to produce DHs at an acceptable level. The most common method is using some mitotic spindle poisons that target the organization of the microtubule system. Colchicine is a well-known and widely used antimitotic. However, there are substances alternative to colchicine in terms of efficiency, toxicity, safety, and genetic stability, which can be applied in in vitro and in vivo pathways. Both pathways have their own advantages and disadvantages. However, in vitro-induced chromosome doubling has been much preferred in recent years, maybe because of the dual effect of antimitotic agents (haploid induction and chromosome doubling) in just one step, and the reduced generation of chimeras. Plant genotype, the developmental stage of initial haploids, and type-concentration-duration of application of antimitotic agents, are top influential parameters on chromosome doubling efficiency. In this review, we highlight different aspects related to antimitotic agents and to plant parameters for successful chromosome doubling and high DH yield.
Collapse
Affiliation(s)
- Mehran E Shariatpanahi
- Department of Tissue and Cell Culture, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Mohsen Niazian
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj, Iran
| | - Behzad Ahmadi
- Department of Maize and Forage Crops Research, Agricultural Research, Education and Extension Organization (AREEO), Seed and Plant Improvement Institute (SPII), Karaj, Iran
| |
Collapse
|
2
|
Kim KU, Lee JH, Lee MY, Chae CH, Lee JH, Lee BH, Oh KS. DITMD-induced mitotic defects and apoptosis in tumor cells by blocking the polo-box domain-dependent functions of polo-like kinase 1. Eur J Pharmacol 2019; 847:113-122. [PMID: 30689997 DOI: 10.1016/j.ejphar.2019.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 11/29/2022]
Abstract
DITMD (1, 3- Dioxolo[4,5-g] isoquinolinium 5, 6, 7, 8- tetrahydro- 4- methoxy- 6, 6- dimethyl- 5- [2- oxo- 2- (2-pyridinyl)ethyl] - iodide) is a natural product-like compound with a hydrocotarnine moiety. The aim of this study was to investigate the anticancer effects of DITMD including mitotic arrest, apoptosis, radiosensitization, and to further explore its possible mechanism. DITMD (3-30 µM) induced an obvious cell cycle delay at G2/M transition and apoptosis in HeLa cells. In a validation study, DITMD caused chromosome alignment defects and accumulation of mitotic markers such as polo-like kinase 1, cyclin B1, and phospho-histone H3. DITMD pre-treatment for 11 h also significantly decreased the cells' survival after X-ray irradiation. In mechanism studies, DITMD inhibited the polo-box domain of polo-like kinase 1 but not the conserved kinase domain. Molecular modeling also suggests that DITMD binds at the phosphate group recognition site and inhibits the action on phospho-peptide ligands. In addition, DITMD was analyzed as a PLHSpT competitive inhibitor with an IC50 value of 2.1 μM and exhibited good selectivity against 105 distinct kinases. Taken together, these results indicate that DITMD induced chromosome alignment defects, apoptosis and radio-sensitization, and suggest that one mechanism underlying these anticancer effects involves inhibiting the polo-box domain-dependent functions of polo-like kinase 1.
Collapse
Affiliation(s)
- Ka-Ul Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea
| | - Ju Hee Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Mi Young Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Chong Hak Chae
- Chemical simulation Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Jeong Hyun Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea
| | - Byung Ho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34183, Republic of Korea
| | - Kwang-Seok Oh
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea.
| |
Collapse
|
3
|
Wang G, Peng Z, Peng S, Qiu J, Li Y, Lan Y. (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides as tubulin polymerization inhibitors: Structure-based bioisosterism design, synthesis, biological evaluation, molecular docking and in silico ADME prediction. Bioorg Med Chem Lett 2018; 28:3350-3355. [PMID: 30197030 DOI: 10.1016/j.bmcl.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
A series of (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides have been synthesized and evaluated for their anticancer activity in human hepatocellular liver carcinoma HepG2 and breast adenocarcinoma MCF-7 cell lines. Among all the tested compounds, compound 3a, 3e and 3n displayed more activity than lead compound with IC50 value of 0.26-0.61 μM. Meanwhile, these compounds (3a, 3e and 3n) showed potent antiproliferative activity against a panel of cancer cells and the HCT-8/T multidrug resistant cell line with IC50 values in the range of 0.077- 7.44 μM. Flow cytometric analyses revealed that compound 3n induced cell cycle arrest in G2/M phases in a dose dependent manner. The compound 3n also displayed potent tubulin polymerization inhibition with an IC50 value of 0.9 µM, with ten folds more active than colchicine (IC50 = 9 μM). Molecular docking studies revealed that compound 3n efficiently interacted with the colchicine binding site of tubulin through hydrophobic, cation-π and hydrogen bond interaction. Furthermore, in silico pharmacokinetic prediction shown that these compounds have a good ADME-related physicochemical parameters. These results demonstrate that 3n exhibits potent cytotoxicity in cancer cells by targeting the colchicine binding site of tubulin and potentially acts as a therapeutic lead compound for the development of anticancer drugs.
Collapse
Affiliation(s)
- Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China.
| | - Zhiyun Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Shanshan Peng
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Jie Qiu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.
| | - Yanyu Lan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|