1
|
Volpe DA. Knockout Transporter Cell Lines to Assess Substrate Potential Towards Efflux Transporters. AAPS J 2024; 26:79. [PMID: 38981917 DOI: 10.1208/s12248-024-00950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance transporter 2 (MRP2) are efflux transporters involved in the absorption, excretion, and distribution of drugs. Bidirectional cell assays are recognized models for evaluating the potential of new drugs as substrates or inhibitors of efflux transporters. However, the assays are complicated by a lack of selective substrates and/or inhibitors, as well simultaneous expression of several efflux transporters in cell lines used in efflux models. This project aims to evaluate an in vitro efflux cell assay employing model substrates and inhibitors of P-gp, BCRP and MRP2 with knockout (KO) cell lines. The efflux ratios (ER) of P-gp (digoxin, paclitaxel), BCRP (prazosin, rosuvastatin), MRP2 (etoposide, olmesartan) and mixed (methotrexate, mitoxantrone) substrates were determined in wild-type C2BBe1 and KO cells. For digoxin and paclitaxel, the ER decreased to less than 2 in the cell lines lacking P-gp expression. The ER decreased to less than 3 for prazosin and less than 2 for rosuvastatin in the cell lines lacking BCRP expression. For etoposide and olmesartan, the ER decreased to less than 2 in the cell lines lacking MRP2 expression. The ER of methotrexate and mitoxantrone decreased in single- and double-KO cells without BCRP and MRP2 expression. These results show that KO cell lines have the potential to better interpret complex drug-transporter interactions without depending upon multi-targeted inhibitors or overlapping substrates. For drugs that are substrates of multiple transporters, the single- and double-KO cells may be used to assess their affinities for the different transporters.
Collapse
Affiliation(s)
- Donna A Volpe
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993-0002, USA.
| |
Collapse
|
2
|
Wang X, Li Y, Li X, Sun L, Feng Y, Sa F, Ge Y, Yang S, Liu Y, Li W, Cheng X. Transcriptome and metabolome profiling unveils the mechanisms of naphthalene acetic acid in promoting cordycepin synthesis in Cordyceps militaris. Front Nutr 2023; 10:1104446. [PMID: 36875834 PMCID: PMC9977999 DOI: 10.3389/fnut.2023.1104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cordycepin, an important active substance in Cordyceps militaris, possesses antiviral and other beneficial activities. In addition, it has been reported to effectively promote the comprehensive treatment of COVID-19 and thus has become a research hotspot. The addition of naphthalene acetic acid (NAA) is known to significantly improve the yield of cordycepin; however, its related molecular mechanism remains unclear. We conducted a preliminary study on C. militaris with different concentrations of NAA. We found that treatment with different concentrations of NAA inhibited the growth of C. militaris, and an increase in its concentration significantly improved the cordycepin content. In addition, we conducted a transcriptome and metabolomics association analysis on C. militaris treated with NAA to understand the relevant metabolic pathway of cordycepin synthesis under NAA treatment and elucidate the relevant regulatory network of cordycepin synthesis. Weighted gene co-expression network analysis (WGCNA), transcriptome, and metabolome association analysis revealed that genes and metabolites encoding cordycepin synthesis in the purine metabolic pathway varied significantly with the concentration of NAA. Finally, we proposed a metabolic pathway by analyzing the relationship between gene-gene and gene-metabolite regulatory networks, including the interaction of cordycepin synthesis key genes; key metabolites; purine metabolism; TCA cycle; pentose phosphate pathway; alanine, aspartate, and glutamate metabolism; and histidine metabolism. In addition, we found the ABC transporter pathway to be significantly enriched. The ABC transporters are known to transport numerous amino acids, such as L-glutamate, and participate in the amino acid metabolism that affects the synthesis of cordycepin. Altogether, multiple channels work together to double the cordycepin yield, thereby providing an important reference for the molecular network relationship between the transcription and metabolism of cordycepin synthesis.
Collapse
Affiliation(s)
- Xin Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yin Li
- Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Xiue Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Lei Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yetong Feng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Fangping Sa
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yupeng Ge
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Shude Yang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yu Liu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Weihuan Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Xianhao Cheng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
3
|
Younis IR, Manchandani P, Hassan HE, Qosa H. Trends in FDA Transporter-Based Post Marketing Requirements and Commitments Over the Last Decade. Clin Pharmacol Ther 2022; 112:635-642. [PMID: 35780478 DOI: 10.1002/cpt.2701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Characterizing interactions between new molecular entities (NMEs) and drug transporters is a critical element of drug development that helps in assessing potential transporter-based drug-drug interactions (DDIs). However, not all NME new drug applications (NDAs) include a full characterization of NMEs transporter-based DDI, which necessitates the issuance of post marketing requirement (PMR)/post marketing commitment (PMC) by the US Food and Drug Administration (FDA) to characterize these potential interactions. The objective of this analysis is to identify trends in transporter-based PMRs/PMCs issued by the FDA between 2012 and 2021. A decrease in the number of transporter-based PMRs/PMCs was observed from 2012 to 2016 and an increasing trend in the number of PMRs/PMCs was observed after 2017. The majority of these transporter-based PMRs/PMCs requested clinical evaluation (48%), some requested in vitro assessment (38%), and 2.5% requested modeling and simulation assessment. Most of the PMRs/PMCs requested evaluation of NMEs as perpetrator with the efflux transporters, P-gp and/or BCRP (53%). Forty-eight percent of the PMRs/PMCs were fulfilled with 67% resulted in labelling updates. On average 2.5 years were needed for the information related to PMRs/PMCs to show in NMEs labeling. In conclusion, this analysis highlights the increased emphasis from the FDA on proper characterization of transporter-based DDI and call for the need of early characterization of NMEs-transporters interaction before initial NDA approval.
Collapse
Affiliation(s)
- Islam R Younis
- Department of Clinical Pharmacology, Gilead Sciences, Inc., Foster City, CA, USA
| | - Pooja Manchandani
- Clincial Pharmacology and Exploratory Development, Astellas Pharma Global Development, Inc., Northbrook, IL, USA
| | - Hazem E Hassan
- School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | | |
Collapse
|