1
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Shang C, Ma YB, Wang Y, He XF, Li TZ, Chen JJ. Artemongolins A-K, undescribed germacrane-guaiane sesquiterpenoid dimers from Artemisia mongolica and their antihepatoma activities. Arch Pharm Res 2023; 46:782-794. [PMID: 37770811 DOI: 10.1007/s12272-023-01466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Artemongolins A-K (1-11), which are undescribed sesquiterpenoid dimers, were obtained from Artemisia mongolica and characterized through comprehensive spectral data, including HRESIMS, IR, 1D and 2D NMR, and ECD calculations. The absolute configurations of compounds 1, 4, and 7 were undoubtedly determined by a single-crystal X-ray crystallography. Artemongolins A-K (1-11) featured a rare 5/7/5/5/5/10 hexacyclic system composed of a germacrene and a guaianolide by a fused 2-oxaspiro[4,4]nonane-1-one ring system. Antihepatoma evaluation against three human hepatoma cell lines demonstrated that the most active compounds 5 and 6 displayed inhibitory activity with IC50 values of 88.6 and 57.0 (HepG2), 59.1 and 26.4 (Huh7), and 67.5 and 32.5 (SK-Hep-1) µM, respectively.
Collapse
Affiliation(s)
- Chong Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yuan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
3
|
Han H, Alsayed AMM, Wang Y, Yan Q, Shen A, Zhang J, Ye Y, Liu Z, Wang K, Zheng X. Discovery of β-cyclocitral-derived mono-carbonyl curcumin analogs as anti-hepatocellular carcinoma agents via suppression of MAPK signaling pathway. Bioorg Chem 2023; 132:106358. [PMID: 36642021 DOI: 10.1016/j.bioorg.2023.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/22/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a high recurrence and mortality rate. In this study, a series of β-cyclocitral-derived mono-carbonyl curcumin analogs were synthesized and their anticancer properties were evaluated. Among the series, A19 exhibited the strongest cytotoxic activity by inhibiting cell viability and colony formation, inducing cell cycle G2/M phase arrest and cell apoptosis of HCC HepG2 and Huh-7 cells, while having almost no cytotoxicity on normal liver MIHA cells. Mechanistically, our results demonstrated that A19 triggered intense DNA damage via suppression of the ERK/JNK/p38 MAPK signaling pathway. Additionally, a combination of A19 with sorafenib significantly induced synergistic cytotoxicity in HCC cells. Overall, our results indicate the potential of A19 as a novel chemotherapeutic drug administered either separately or in combined therapy for HCC treatment.
Collapse
Affiliation(s)
- Haoyi Han
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Ali Mohammed Mohammed Alsayed
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Qi Yan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Ancheng Shen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Jianxia Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Yanfei Ye
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| | - Kun Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaohui Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Artemleucolides A-L, eudesmane-type sesquiterpenoids from Artemisia leucophylla and their antihepatoma cytotoxicity. Fitoterapia 2023; 165:105399. [PMID: 36572116 DOI: 10.1016/j.fitote.2022.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Twelve undescribed and 13 known eudesmane-type sesquiterpenoids were obtained from Artemisia leucophylla, and structurally elucidated based on comprehensive analyses of spectral data, including HRESIMS, IR, 1D and 2D NMR, and ECD calculation. The absolute configuration of compound 1 was determined by a single X-ray single crystal diffraction. Chemically, compounds 1-5 featured unprecedented 1,2-seco-1-nor-eudesmane-type skeleton with a cis-fused 6/5 bicyclic system. Antihepatoma evaluation against three human hepatoma cell lines (HepG2, Huh7, and SK-Hep-1) for all compounds demonstrated that compound 7 displayed the most active cytotoxicity with IC50 values of 35.1, 35.0, and 32.7 μΜ.
Collapse
|
5
|
Chen J, Niu C, Yang N, Liu C, Zou SS, Zhu S. Biomarker discovery and application-An opportunity to resolve the challenge of liver cancer diagnosis and treatment. Pharmacol Res 2023; 189:106674. [PMID: 36702425 DOI: 10.1016/j.phrs.2023.106674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Liver cancer is one of the most common malignancies, with severe morbidity and mortality. While considerable progress has been made in liver cancer treatment, the 5-year overall survival (OS) of patients has not improved significantly. Reasons include the inadequate capability of early screening and diagnosis, a high incidence of recurrence and metastasis, a high degree of tumor heterogeneity, and an immunosuppressive tumor microenvironment. Therefore, the identification and validation of specific and robust liver cancer biomarkers are of major importance for early screening, timely diagnosis, accurate prognosis, and the prevention of tumor progression. In this review, we highlight some of the latest research progress and potential applications of liver cancer biomarkers, describing hotspots and prospective directions in biomarker discovery.
Collapse
Affiliation(s)
- Jingtao Chen
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China; Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chao Niu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ning Yang
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunyan Liu
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan-Shan Zou
- Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan Zhu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China; Laboratory for Tumor Immunology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Zhang X, Ma YB, He XF, Li TZ, Geng CA, Su LH, Tang S, Gao Z, Chen JJ. Artemyrianosins A-J, cytotoxic germacrane-type sesquiterpene lactones from Artemisia myriantha. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:16. [PMID: 35491411 PMCID: PMC9058048 DOI: 10.1007/s13659-022-00340-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Ten new germacrane-type sesquiterpenoids, artemyrianosins A-J (1-10), were isolated from the aerial parts of Artemisia myriantha. Their structures were elucidated by spectral analyses including UV, IR, HRESIMS, 1D and 2D NMR, ECD and the absolute configurations of compounds 1 and 7-9 were characterized using X-ray crystallography. All isolates were tested their cytotoxicity against three human hepatoma cell lines (HepG2, Huh7, and SK-Hep-1), and compounds 1-3, 7, and 10 showed cytotoxicity with IC50 values ranging from 43.7 to 89.3 μM. Among them, the most active compound 3 exhibited activity against three human hepatoma cell lines with IC50 values of 43.7 μM (HepG2), 47.9 μM (Huh7), and 44.9 μM (SK-Hep-1).
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
| | - Li-Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
| | - Shuang Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
| | - Zhen Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 132# Lanhei Road, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
7
|
Park HJ, Choi G, Ha S, Kim Y, Choi MJ, Kim M, Islam MK, Chang Y, Kwon TJ, Kim D, Jang E, Kim TH, Chang SJ, Kim YH. MBP-11901 Inhibits Tumor Growth of Hepatocellular Carcinoma through Multitargeted Inhibition of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14081994. [PMID: 35454900 PMCID: PMC9030223 DOI: 10.3390/cancers14081994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Although various treatments such as surgery and chemotherapy exist for advanced or unresectable HCC, most patients suffer from intractable diseases, having a poor prognosis. While immunotherapy using immune checkpoint inhibitors was recently proposed for HCC, only a small percentage of patients respond. Thus, there remains an unmet need for the development of therapeutic agents for the treatment of liver cancer. Here, we presented multi-RTKi MBP-11901, an innovative targeted anticancer agent for HCC, suggesting it as a new therapeutic strategy for the treatment of liver cancer. Abstract Hepatocellular carcinomas (HCCs) are aggressive tumors with a poor prognosis. Approved first-line treatments include sorafenib, lenvatinib, and a combination of atezolizumab and bevacizumab; however, they do not cure HCC. We investigated MBP-11901 as a drug candidate for HCC. Cell proliferation and cytotoxicity were evaluated using normal and cancer human liver cell lines, while Western blotting and flow cytometry evaluated apoptosis. The anticancer effect of MBP-11901 was verified in vitro through migration, invasion, colony formation, and JC-1 MMP assays. In mouse models, the tumor volume, tumor weight, and bodyweight were measured, and cancer cell proliferation and apoptosis were analyzed. The toxicity of MBP-11901 was investigated through GOT/GPT and histological analyses in the liver and kidney. The signaling mechanism of MBP-11901 was investigated through kinase assays, phosphorylation analysis, and in silico docking simulations. Results. MBP-11901 was effective against various human HCC cell lines, leading to the disappearance of most tumors when administered orally in animal models. This effect was dose-dependent, with no differences in efficacy according to administration intervals. MBP-11901 induced anticancer effects by targeting the signaling mechanisms of FLT3, VEGFR2, c-KIT, and PDGFRβ. MBP-11901 is suggested as a novel therapeutic agent for the treatment of advanced or unresectable liver cancer.
Collapse
Affiliation(s)
- Hyun Jin Park
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Garam Choi
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Seongmin Ha
- Institute of Biomedical Engineering Research, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (S.H.); (M.K.I.); (Y.C.)
| | - Yesl Kim
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Min-Jin Choi
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Minsup Kim
- InCerebro Drug Discovery Institute, Seoul 01811, Korea;
| | - Md. Kamrul Islam
- Institute of Biomedical Engineering Research, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (S.H.); (M.K.I.); (Y.C.)
| | - Yongmin Chang
- Institute of Biomedical Engineering Research, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (S.H.); (M.K.I.); (Y.C.)
| | - Tae-Jun Kwon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Cheombok-ro, Dong-gu, Daegu 41061, Korea; (T.-J.K.); (D.K.)
| | - Dongkyu Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Cheombok-ro, Dong-gu, Daegu 41061, Korea; (T.-J.K.); (D.K.)
| | - Eunbee Jang
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si 38430, Korea; (E.J.); (T.H.K.)
| | - Tae Hwan Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si 38430, Korea; (E.J.); (T.H.K.)
| | - Sha Joung Chang
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
- Correspondence: ; Tel.: +82-31-776-3403
| |
Collapse
|
8
|
Gao Z, Fan T, Chen L, Yang M, Wai Wong VK, Chen D, Liu Z, Zhou Y, Wu W, Qiu Z, Zhang C, Li Y, Jiang Y. Design, synthesis and antitumor evaluation of novel 1H-indole-2-carboxylic acid derivatives targeting 14-3-3η protein. Eur J Med Chem 2022; 238:114402. [DOI: 10.1016/j.ejmech.2022.114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 11/04/2022]
|
9
|
Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022; 22:73. [PMID: 35148789 PMCID: PMC8840552 DOI: 10.1186/s12935-021-02435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treatments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenvironment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and is associated with tumour progression partially through the epithelial-mesenchymal transition. Specifically, the TME of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Administration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyroptosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated neutrophils, and induction of the epithelial-mesenchymal transition. In conclusion, the effect of TKIs on TME can enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, including combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
Collapse
|
10
|
Sun R, Fang L, Lv X, Fang J, Wang Y, Chen D, Wang L, Chen J, Qi Y, Tang Z, Zhang J, Tian Y. In vitro and in vivo evaluation of self-assembled chitosan nanoparticles selectively overcoming hepatocellular carcinoma via asialoglycoprotein receptor. Drug Deliv 2021; 28:2071-2084. [PMID: 34595970 PMCID: PMC8491732 DOI: 10.1080/10717544.2021.1983077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related mortality worldwide. Nowadays, liver-targeting drug delivery system has been proven as a promising strategy for overcoming HCC. Asialoglycoprotein receptor (ASGPR) is an ideal receptor for liver targeting, which is mainly expressed on hepatocytes. In this study, we developed several novel liver-targeting chitosan nanoparticles to selectively overcome HCC via ASGPR. Chitosan nanoparticles (Gly-CS-VE, Gal-Gly-CS-VE, Gly-CS-DCA, and Gal-Gly-CS-DCA) were prepared by grafting hydrophilic group (glycidol, Gly), hydrophobic group (deoxycholic acid, DCA or vitamin E succinate, VE), and ASGPR recognizing group (galactose, Gal). Subsequently, their characterizations were measured by 1H NMR, FT-IR, TEM, and DLS. Doxorubicin (DOX) was loaded in nanoparticles and released out in a pH-dependent manner. Most importantly, the galactosylated Gal-Gly-CS-VE and Gal-Gly-CS-DCA nanoparticles exhibited significantly stronger in vitro cell internalization, cytotoxicity, anti-migration capabilities and in vivo anticancer efficacies than the corresponding Gly-CS-VE and Gly-CS-DCA nanoparticles, as well as free DOX. Finally, the four chitosan nanoparticles exhibited good biocompatibility without causing any obvious histological damage to the major organs. Overall, the galactosylated chitosan nanoparticles were proven to be promising pharmaceutical formulations for selectively overcoming HCC, with great potential for clinical applications.
Collapse
Affiliation(s)
- Rensong Sun
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Fang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Xia Lv
- Collage of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jiani Fang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuting Wang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Dapeng Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yan Qi
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Zeyao Tang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Jianbin Zhang
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| | - Yan Tian
- Collage of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Su LH, Ma YB, Geng CA, Li TZ, Huang XY, Hu J, Xin Zhang, Tang S, Shen C, Gao Z, Zhang XM, Chen JJ. Artematrovirenins A-P, guaiane-type sesquiterpenoids with cytotoxicities against two hepatoma cell lines from Artemisia atrovirens. Bioorg Chem 2021; 114:105072. [PMID: 34144276 DOI: 10.1016/j.bioorg.2021.105072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Random screening revealed that the EtOH extract of Artemisia atrovirens showed significant cytotoxicity against two human hepatoma cell lines (HepG2 and Huh7) with the inhibitory ratio of 98.9% and 99.7% at the concentration of 100 μg/mL. Further bioactivity-guided isolation of active fraction led to 16 new guaiane-type sesquiterpenoids, artematrovirenins A-P (1-16). Their structures were elucidated by extensive spectroscopic data. The absolute stereochemistry of compounds 1 and 14 was determined by single-crystal X-ray diffraction analyses. Pharmacological evaluation suggested that five compounds (3, 5, 8, 10, and 15) exhibited cytotoxicity, compounds 3 and 5 displayed cytotoxicity against HepG2 cell line with an IC50 values of 8.0 and 16.0 μM, as well as against Huh7 cell line with values of 18.2 and 32.2 μM.
Collapse
Affiliation(s)
- Li-Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuang Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cheng Shen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
12
|
Nutt MJ, Yee YS, Buyan A, Andrewartha N, Corry B, Yeoh GCT, Stewart SG. In pursuit of a selective hepatocellular carcinoma therapeutic agent: Novel thalidomide derivatives with antiproliferative, antimigratory and STAT3 inhibitory properties. Eur J Med Chem 2021; 217:113353. [PMID: 33773263 DOI: 10.1016/j.ejmech.2021.113353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
Advanced stage liver cancer is predominantly treated with the multi-kinase inhibitor sorafenib; however, this therapeutic agent lacks selectivity in its cytotoxic actions and is associated with poor survival outcomes. Herein we report the design and preparation of several thalidomide derivatives, including a variety of novel thioether-containing forms that are especially rare in the literature. Importantly, two of the derivatives described are potent antiproliferative agents with dose-dependent selectivity for tumorigenic liver progenitor cells (LPC) growth inhibition (up to 36% increase in doubling time at 10 μM) over non-tumorigenic cells (no effect at 10 μM). Furthermore, these putative anti-liver cancer agents were also found to be potent inhibitors of tumorigenic LPC migration. This report also describes these derivatives' effects on several key signalling pathways in our novel liver cell lines by immunofluorescence and AlphaLISA assays. Aryl thioether derivative 7f significantly reduced STAT3 phosphorylation (23%) and its nuclear localisation (16%) at 10 μM in tumorigenic LPCs, implicating the IL-6/JAK/STAT3 axis is central in the mode of action of our derivatives.
Collapse
Affiliation(s)
- Michael J Nutt
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
| | - Yeung Sing Yee
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Amanda Buyan
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Neil Andrewartha
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - George C T Yeoh
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia; The Centre for Medical Research, The Perkins Institute of Medical Research, Nedlands, WA, 6009, Australia
| | - Scott G Stewart
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
13
|
Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res 2020; 149:63-101. [PMID: 33579428 DOI: 10.1016/bs.acr.2020.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the recent introduction of new effective systemic agents, the survival of patients with hepatocellular carcinoma (HCC) at advanced stages remains dismal. This underscores the need for new therapies, which has spurred extensive research on the identification of the main drivers of pathway de-regulation as a source of novel therapeutic targets. Frequently altered pathways in HCC involve growth factor receptors (e.g., VEGFR, FGFR, TGFA, EGFR, IGFR) and/or its cytoplasmic intermediates (e.g., PI3K-AKT-mTOR, RAF/ERK/MAPK) as well as key pathways in cell differentiation (e.g., Wnt/β-catenin, JAK/STAT, Hippo, Hedgehog, Notch). Somatic mutations, chromosomal aberrations and epigenetic changes are common mechanisms for pathway deregulation in HCC. Aberrant pathway activation has also been explored as a biomarker to predict response to specific therapies, but currently, these strategies are not implemented when deciding systemic therapies in HCC patients. Beyond the well-established molecular cascades, there are numerous emerging signaling pathways also deregulated in HCC (e.g., tumor microenvironment, non-coding RNA, intestinal microbiota), which have opened new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Luis Lopez-Canovas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
14
|
Beyoğlu D, Idle JR. Metabolomic insights into the mode of action of natural products in the treatment of liver disease. Biochem Pharmacol 2020; 180:114171. [DOI: 10.1016/j.bcp.2020.114171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
|
15
|
Tang S, Zhang XT, Ma YB, Huang XY, Geng CA, Li TZ, Zhang XM, Shen C, Su LH, Gao Z, Chen JJ. Artemyrianolides A-S, Cytotoxic Sesquiterpenoids from Artemisia myriantha. JOURNAL OF NATURAL PRODUCTS 2020; 83:2618-2630. [PMID: 32842729 DOI: 10.1021/acs.jnatprod.0c00396] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Random screening suggested that the EtOH extract of Artemisia myriantha (Asteraceae) and its EtOAc fraction had cytotoxicity against HepG2 cells with inhibitory ratios of 30.6% and 53.5% at 50.0 μg/mL. Bioassay-guided isolation of the most active fractions (Fr. C and Fr. D) afforded 19 new sesquiterpenolides, artemyrianolides A-S (1-19), involving 13 germacranolides (1-13), four guaianolides (14-17), and two eudesmanolides (18 and 19), together with 16 known sesquiterpenoids (20-35). The new compounds were characterized by physical data analyses (HRESIMS, IR, 1D and 2D NMR, ECD), and the absolute configurations of compounds 1, 2, and 11 were determined by X-ray crystallography. Structurally, compounds 2 and 11-13 maintain an uncommon cis-fused 10/5 bicyclic system and compound 12 possesses an unusual (7S) configuration. Twenty of the compounds exhibited cytotoxicity against HepG2, Huh7, and SMMC-7721 cell lines. Compound 9 showed cytotoxic activity on both HepG2 and Huh7 cells with IC50 values of 8.6 and 8.8 μM, and compounds 8 and 33 showed cytotoxicity to the three human hepatoma cell lines with IC50 values of 4.9 and 7.4 μM (HepG2), 4.3 and 7.8 μM (Huh7), and 3.1 and 9.8 μM (SMMC-7721), respectively.
Collapse
Affiliation(s)
- Shuang Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin-Tian Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Cheng Shen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Li-Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhen Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
16
|
Tang S, Ma YB, Geng CA, Shen C, Li TZ, Zhang XM, Su LH, Gao Z, Hu J, Chen JJ. Artemyrianins A-G from Artemisia myriantha and Their Cytotoxicity Against HepG2 Cells. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:251-260. [PMID: 32596763 PMCID: PMC7367949 DOI: 10.1007/s13659-020-00255-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 05/08/2023]
Abstract
Four new sesquiterpenoids, artemyrianins A-D (1-4), and three new norlignans, artemyrianins E-G (5-7), together with five known compounds (8-12), were isolated from the aerial parts of Artemisia myriantha (Asteraceae). The new compounds were established by spectroscopic data analyses (HRMS, IR, 1D and 2D NMR), and their absolute configurations were confirmed by the single-crystal X-ray diffraction or ECD calculations. The isolates showed cytotoxicity against HepG2 cells with IC50 values ranging from 33.3 to 145.2 μM.
Collapse
Affiliation(s)
- Shuang Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Cheng Shen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Li-Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhen Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|