1
|
Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A. Recent developments in the application of immobilized artificial membrane (IAM) chromatography to drug discovery. Expert Opin Drug Discov 2024; 19:1087-1098. [PMID: 38957047 DOI: 10.1080/17460441.2024.2374409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Immobilized artificial membrane (IAM) chromatography is widely used in many aspects of drug discovery. It employs stationary phases, which contain phospholipids combining simulation of biological membranes with rapid measurements. AREAS COVERED Advances in IAM stationary phases, chromatographic conditions and the underlying retention mechanism are discussed. The potential of IAM chromatography to model permeability and drug-membrane interactions as well as its use to estimate pharmacokinetic properties and toxicity endpoints including ecotoxicity, is outlined. Efforts to construct models for prediction IAM retention factors are presented. EXPERT OPINION IAM chromatography, as a border case between partitioning and binding, has broadened its application from permeability studies to encompass processes involving tissue binding. Most IAM-based permeability models are hybrid models incorporating additional molecular descriptors, while for the estimation of pharmacokinetic properties and binding to off targets, IAM retention is combined with other biomimetic properties. However, for its integration into routine drug discovery protocols, reliable IAM prediction models implemented in relevant software should be developed, to enable its use in virtual screening and the design of new molecules. Conversely, preparation of new IAM columns with different phospholipids or mixed monomers offers enhanced flexibility and the potential to tailor the conditions according to the target property.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Chen Z, Zhu C, Yang J, Zhang M, Yuan J, Shen Y, Zhou J, Huang H, Xu D, Crommen J, Jiang Z, Wang Q. Inside-Out Oriented Choline Phosphate-Based Biomimetic Magnetic Nanomaterials for Precise Recognition and Analysis of C-Reactive Protein. Anal Chem 2023; 95:3532-3543. [PMID: 36744576 DOI: 10.1021/acs.analchem.2c05683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phospholipid-based materials exhibit great application potential in the fields of chemistry, biology, and pharmaceutical sciences. In this study, an inside-out oriented choline phosphate molecule, 2-{2-(methacryloyloxy)ethyldimethylammonium}ethyl n-butyl phosphate (MBP), was proposed and verified as a novel ligand of C-reactive protein (CRP) to enrich the functionality of these materials. Compared with phosphorylcholine (PC)-CRP interactions, the binding between MBP and CRP was not affected by the reverse position of phosphate and choline groups and even found more abundant binding sites. Thus, high-density MBP-grafted biomimetic magnetic nanomaterials (MBP-MNPs) were fabricated by reversible addition-fragmentation chain transfer polymerization based on thiol-ene click chemistry. The novel materials exhibited multifunctional applications for CRP including purification and ultrasensitive detection. On the one hand, higher specificity, recovery (90%), purity (95%), and static binding capacity (198.14 mg/g) for CRP were achieved on the novel materials in comparison with traditional PC-based materials, and the enriched CRP from patient serum can maintain its structural integrity and bioactivity. On the other hand, the CRP detection method combining G-quadruplex and thioflavin T developed with MBP-MNPs showed a lower detection limit (10 pM) and wider linear range (0.1-50 nM) than most PC-functionalized analytical platforms. Therefore, the inside-out oriented choline phosphate can not only precisely recognize CRP but also be combined with biomimetic nanomaterials to provide high application potential.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Chendi Zhu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jiawen Yang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Mengyun Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jiaming Yuan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Yuan Shen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jingwei Zhou
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Hao Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Dongsheng Xu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.,Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, CHU B36, B-4000 Liege, Belgium
| | - Zhengjin Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiqin Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Modeling of Anticancer Sulfonamide Derivatives Lipophilicity by Chemometric and Quantitative Structure-Retention Relationships Approaches. Molecules 2022; 27:molecules27133965. [PMID: 35807212 PMCID: PMC9268166 DOI: 10.3390/molecules27133965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Sulfonamides are a classic group of chemotherapeutic drugs with a broad spectrum of pharmacological action, including anticancer activity. In this work, reversed-phase high-performance liquid chromatography and biomimetic chromatography were applied to characterize the lipophilicity of sulfonamide derivatives with proven anticancer activities against human colon cancer. Chromatographically determined lipophilicity parameters were compared with obtained logP, employing various computational approaches. Similarities and dissimilarities between experimental and computational logP were studied using principal component analysis, cluster analysis, and the sum of ranking differences. Furthermore, quantitative structure–retention relationship modeling was applied to understand the influences of sulfonamide’s molecular properties on lipophilicity and affinity to phospholipids.
Collapse
|
4
|
Ciura K, Kovačević S, Pastewska M, Kapica H, Kornela M, Sawicki W. Prediction of the chromatographic hydrophobicity index with immobilized artificial membrane chromatography using simple molecular descriptors and artificial neural networks. J Chromatogr A 2021; 1660:462666. [PMID: 34781046 DOI: 10.1016/j.chroma.2021.462666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/01/2022]
Abstract
Screening of physicochemical properties should be considered one of the essential steps in the drug discovery pipeline. Among the available methods, biomimetic chromatography with an immobilized artificial membrane is a powerful tool for simulating interactions between a molecule and a biological membrane. This study developed a quantitative structure-retention relationships model that would predict the chromatographically determined affinity of xenobiotics to phospholipids, expressed as a chromatographic hydrophobicity index determined using immobilized artificial membrane chromatography. A heterogeneous set of 261 molecules, mostly showing pharmacological activity or toxicity, was analyzed chromatographically to realize this goal. The chromatographic analysis was performed using the fast gradient protocol proposed by Valko, where acetonitrile was applied as an organic modifier. Next, quantitative structure-retention relationships modeling was performed using multiple linear regression (MLR) methods and artificial neural networks (ANNs) coupled with genetic algorithm (GA)-inspired selection. Subsequently, the selection of the best ANN was supported by statistical parameters, the sum of ranking differences approach with the comparison of rank by random numbers and hierarchical cluster analysis.
Collapse
Affiliation(s)
- Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Aleja Gen. Hallera 107, Gdańsk 80-416, Poland; QSAR Lab Ltd., Trzy Lipy 3St. Gdańsk 80-172, Poland.
| | - Strahinja Kovačević
- Department of Applied and Engineering Chemistry, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad 21000, Serbia
| | - Monika Pastewska
- Department of Physical Chemistry, Medical University of Gdańsk, Aleja Gen. Hallera 107, Gdańsk 80-416, Poland
| | - Hanna Kapica
- Department of Physical Chemistry, Medical University of Gdańsk, Aleja Gen. Hallera 107, Gdańsk 80-416, Poland
| | - Martyna Kornela
- Department of Physical Chemistry, Medical University of Gdańsk, Aleja Gen. Hallera 107, Gdańsk 80-416, Poland
| | - Wiesław Sawicki
- Department of Physical Chemistry, Medical University of Gdańsk, Aleja Gen. Hallera 107, Gdańsk 80-416, Poland
| |
Collapse
|
5
|
Chen X, Liu B, Tong R, Zhan L, Yin X, Luo X, Huang Y, Zhang J, He W, Wang Y. Orchestration of biomimetic membrane coating and nanotherapeutics in personalized anticancer therapy. Biomater Sci 2021; 9:590-625. [PMID: 33305765 DOI: 10.1039/d0bm01617a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoparticle-based therapeutic and detectable modalities can augment anticancer efficiency, holding potential in capable target and suppressive metastases post administration. However, the individual discrepancies of the current "one-size-fits-all" strategies for anticancer nanotherapeutics have heralded the need for "personalized therapy". Benefiting from the special inherency of various cells, diverse cell membrane-coated nanoparticles (CMCNs) were established on a patient-by-patient basis, which would facilitate the personalized treatment of individual cancer patients. CMCNs in a complex microenvironment can evade the immune system and target homologous tumors with a suppressed immune response, as well as a prolonged circulation time, consequently increasing the drug accumulation at the tumor site and anticancer therapeutic efficacy. This review focuses on the emerging strategies and advances of CMCNs to synergistically integrate the merit of source cells with nanoparticulate delivery systems for the orchestration of personalized anticancer nanotherapeutics, thus discussing their rationalities in facilitating chemotherapy, imaging, immunotherapy, phototherapy, radiotherapy, sonodynamic, magnetocaloric, chemodynamic and gene therapy. Furthermore, the mechanism, challenges and opportunities of CMCNs in personalized anticancer therapy were highlighted to further boost cooperation from different fields, including materials science, chemistry, medicine, pharmacy and biology for the lab-to-clinic translation of CMCNs combined with the individual advantages of source cells and nanotherapeutics.
Collapse
Affiliation(s)
- Xuerui Chen
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bingbing Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhan
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin Luo
- Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wen He
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Medicine & School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. and Institution of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Affinity of Fluoroquinolone–Safirinium Dye Hybrids to Phospholipids Estimated by IAM-HPLC. Processes (Basel) 2020. [DOI: 10.3390/pr8091148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nowadays, fluoroquinolones (FQs) constitute one of the most important classes of antibiotics. FQs are used to treat infections caused by Gram-positive and Gram-negative species. A set of fluoroquinolone–Safirinium dye hybrids has been synthesized in our laboratory as potential new dual-action antibacterial agents. In the present study we have evaluated how such a modification influences the affinity of FQs to phospholipids. The immobilized artificial membrane (IAM) high-performance liquid chromatography (IAM-HPLC) was used as a tool for the determination of phospholipids partitioning. The obtained results indicate that the fluoroquinolone–Safirinium dye hybrids, especially the SafiriniumP conjugates, display significantly lower affinity to phospholipids than the parent FQs. Despite the fact that the hybrid structures comprise a quaternary nitrogen atom and hence are permanently charged, the attractive electrostatic interactions between the solutes and negatively charged phospholipids do not occur or occur at a lesser extent than in the case of the unmodified FQs. Since affinity of FQs to phospholipids involves molecular mechanism, which is not entirely determined by lipophilicity, assessment of phospholipid partitioning should be considered at the early stage of the development of new FQ antibiotics.
Collapse
|