1
|
Molla A, Sut TN, Jackman JA. Unraveling Cholesterol-Dependent Interactions of Alkylphospholipids with Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39817647 DOI: 10.1021/acs.langmuir.4c04598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Alkylphospholipids are single-chain lipid amphiphiles that possess clinically relevant biological activities driven by membrane-destabilizing interactions. Subtle variations in alkylphospholipid structure can lead to significant differences in their biological effects, yet corresponding membrane interactions remain underexplored. Herein, we employed the quartz crystal microbalance-dissipation (QCM-D) technique to characterize the real-time membrane interactions of three alkylphospholipids-edelfosine, miltefosine, and perifosine-on supported lipid bilayers with varying cholesterol fractions. Our findings reveal that the tested alkylphospholipids had distinct membrane-interaction profiles: (1) edelfosine exhibited irreversible binding and caused weak membrane disruption; (2) miltefosine caused major disruption by affecting membrane packing; and (3) perifosine exhibited reversible binding while triggering structural rearrangements and modest disruption. Overall, alkylphospholipid micelles showed greater activity than monomers, and higher membrane cholesterol fractions resulted in more extensive disruption, highlighting the interplay between membrane stiffness and responsiveness. These results provide biophysical evidence that different alkylphospholipids have distinct membrane-interaction behaviors that align well with reported biological activities. Our supported lipid bilayer approach offers a valuable platform for designing and assessing alkylphospholipids with tailored membrane-interaction profiles.
Collapse
Affiliation(s)
- Abebual Molla
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Dos Santos GP, Coelho AC, Reimao JQ. The latest progress in assay development in leishmaniasis drug discovery: a review of the available papers on PubMed from the past year. Expert Opin Drug Discov 2025. [PMID: 39760656 DOI: 10.1080/17460441.2025.2450787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Leishmaniasis is a significant neglected tropical disease with limited treatment options that urgently requires ongoing efforts in drug discovery. Recent advances have focused on the development of new assays and methods to identify effective therapeutic candidates. AREAS COVERED This review explores recent trends and methodologies in leishmaniasis drug discovery, with a particular focus on in silico and in vitro studies, as well as in vivo validation, using animal models. A detailed analysis of recent studies was provided, discussing the methodologies employed, such as manual and automated parasite quantification, and the use of fluorescence and luminescence-based techniques. Additionally, global research trends were analyzed, highlighting the leading countries in scientific output and the collaborative efforts driving advancements in this field. EXPERT OPINION The field of leishmaniasis drug discovery has rapidly progressed in the last years, but the lack of standardized methodologies and limited in vivo validation remain significant hurdles. To advance promising treatments to clinical trials, cross-validation of preclinical findings and interdisciplinary collaboration are essential. Increased funding and global partnerships are also crucial to accelerate the discovery and development of alternative and effective therapies.
Collapse
Affiliation(s)
- Gabriela P Dos Santos
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Juliana Q Reimao
- Laboratory of Preclinical Assays and Research of Alternative Sources of Innovative Therapy for Toxoplasmosis and Other Sicknesses (PARASITTOS), Faculdade de Medicina de Jundiaí, Jundiaí, Brazil
| |
Collapse
|
3
|
Zhang H, Yan R, Liu Y, Yu M, He Z, Xiao J, Li K, Liu G, Ning Q, Li Y. Progress in antileishmanial drugs: Mechanisms, challenges, and prospects. PLoS Negl Trop Dis 2025; 19:e0012735. [PMID: 39752369 PMCID: PMC11698350 DOI: 10.1371/journal.pntd.0012735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine. Despite toxicity and resistance (antimonials), hospitalization needs and side effects (amphotericin B), regional efficacy variability (miltefosine), inconsistent outcomes (paromomycin), and severe side effects (pentamidine), these drugs are vital. Novel strategies to overcome the deficiencies of current therapies are highlighted, including combination regimens, advanced drug delivery systems, and immunomodulatory approaches. Comprehensive and cooperative efforts are crucial to fully realize the potential of advancements in antileishmanial pharmacotherapy and to reduce the unacceptable worldwide burden imposed by this neglected disease.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Yan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Mengtao Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Xiao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kaijie Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Spadari CDC, Borba-Santos LP, Rozental S, Ishida K. Miltefosine repositioning: A review of potential alternative antifungal therapy. J Mycol Med 2023; 33:101436. [PMID: 37774486 DOI: 10.1016/j.mycmed.2023.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Fungal infections are a global health problem with high mortality and morbidity rates. Available antifungal agents have high toxicity and pharmacodynamic and pharmacokinetic limitations. Moreover, the increased incidence of antifungal-resistant isolates and the emergence of intrinsically resistant species raise concerns about seeking alternatives for efficient antifungal therapy. In this context, we review literature data addressing the potential action of miltefosine (MFS), an anti-Leishmania and anticancer agent, as a repositioning drug for antifungal treatment. Here, we highlight the in vitro and in vivo data, MFS possible mechanisms of action, case reports, and nanocarrier-mediated MFS delivery, focusing on fungal infection therapy. Finally, many studies have demonstrated the promising antifungal action of MFS in vitro, but there is little or no data on antifungal activity in vertebrate animal models and clinical trials, so have a need to develop more research for the repositioning of MFS as an antifungal therapy.
Collapse
Affiliation(s)
| | - Luana Pereira Borba-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia Rozental
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Gulin JEN, Bisio MMC, Rocco D, Altcheh J, Solana ME, García-Bournissen F. Miltefosine and Benznidazole Combination Improve Anti-Trypanosoma cruzi In Vitro and In Vivo Efficacy. Front Cell Infect Microbiol 2022; 12:855119. [PMID: 35865815 PMCID: PMC9294734 DOI: 10.3389/fcimb.2022.855119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Drug repurposing and combination therapy have been proposed as cost-effective strategies to improve Chagas disease treatment. Miltefosine (MLT), a synthetic alkylphospholipid initially developed for breast cancer and repositioned for leishmaniasis, is a promising candidate against Trypanosoma cruzi infection. This study evaluates the efficacy of MLT as a monodrug and combined with benznidazole (BZ) in both in vitro and in vivo models of infection with T. cruzi (VD strain, DTU TcVI). MLT exhibited in vitro activity on amastigotes and trypomastigotes with values of IC50 = 0.51 µM (0.48 µM; 0,55 µM) and LC50 = 31.17 µM (29.56 µM; 32.87 µM), respectively. Drug interaction was studied with the fixed-ration method. The sum of the fractional inhibitory concentrations (ΣFICs) resulted in ∑FIC= 0.45 for trypomastigotes and ∑FIC= 0.71 for amastigotes, suggesting in vitro synergistic and additive effects, respectively. No cytotoxic effects on host cells were observed. MLT efficacy was also evaluated in a murine model of acute infection alone or combined with BZ. Treatment was well tolerated with few adverse effects, and all treated animals displayed significantly lower mean peak parasitemia and mortality than infected non-treated controls (p<0.05). The in vivo studies showed that MLT led to a dose-dependent parasitostatic effect as monotherapy which could be improved by combining with BZ, preventing parasitemia rebound after a stringent immunosuppression protocol. These results support MLT activity in clinically relevant stages from T. cruzi, and it is the first report of positive interaction with BZ, providing further support for evaluating combined schemes using MLT and exploring synthetic alkylphospholipids as drug candidates.
Collapse
Affiliation(s)
- Julián Ernesto Nicolás Gulin
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina Universidad de Buenos Aires (UBA) – CONICET, Buenos Aires, Argentina
| | - Margarita María Catalina Bisio
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
- Instituto Nacional de Parasitología (INP) ‘Dr. Mario Fatala Chaben’-Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) ‘Dr. Carlos G. Malbrán’, CONICET, Buenos Aires, Argentina
| | - Daniela Rocco
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
| | - Jaime Altcheh
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
| | - María Elisa Solana
- Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Buenos Aires, Argentina
| | - Facundo García-Bournissen
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños “Dr. Ricardo Gutiérrez, Ministerio de Salud, Buenos Aires, Argentina
- Division of Pediatric Clinical Pharmacology, Department of Pediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- *Correspondence: Facundo García-Bournissen,
| |
Collapse
|
6
|
Kant V, Kumar P, Ranjan R, Kumar P, Mandal D, Vijayakumar S. In silico screening, molecular dynamic simulations, and in vitro activity of selected natural compounds as an inhibitor of Leishmania donovani 3-mercaptopyruvate sulfurtransferase. Parasitol Res 2022; 121:2093-2109. [PMID: 35536513 PMCID: PMC9085559 DOI: 10.1007/s00436-022-07532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
In Leishmania sp., the enzymes of de novo cysteine biosynthesis pathway require sulfide. Other organisms utilize sulfide through the sulfide reduction pathway, but Leishmania lacks the gene that encodes these enzymes. Hence, the major source of sulfide for Leishmania is believed to be from the action of 3-mercaptopyruvate sulfurtransferase (3MST) on 3-mercapto-pyruvate (3MP). There has been no effort reported in the past to screen inhibitors against L. donovani 3MST (Ld3MST). As a result, this study examines natural compounds that are potent against Ld3MST and validates it by in vitro activity and cytotoxicity tests. Initially, a library of ~ 5000 natural compounds was subjected to molecular docking approach for screening, and the best hit was validated using a long-term molecular dynamic simulation (MD). Among the docking results, quercetine-3-rutinoside (Rutin) was deemed the best hit. The results of the MD indicated that Rutin was highly capable of interacting with the varied active site segments, possibly blocking substrate access. Additionally, promastigotes and amastigotes were tested for Rutin activity and the IC50 was found to be 40.95 and 90.09 μM, respectively. Similarly, the cytotoxicity assay revealed that Rutin was not toxic even at a concentration of 819.00 μM to THP-1 cell lines. Additionally, the Ld3MST was cloned, purified, and evaluated for enzyme activity in the presence of Rutin. Reduction in the enzyme activity (~ 85%) was observed in the presence of ~ 40 μM Rutin. Thus, this study suggests that Rutin may act as a potent inhibitor of Ld3MST. With further in vivo investigations, Rutin could be a small molecule of choice for combating leishmaniasis.
Collapse
Affiliation(s)
- Vishnu Kant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Pawan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Ravi Ranjan
- Division of Bioinformatics, ICMR-Rajendra Memorial Institute of Medical Sciences, Patna, Bihar, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India.
| | - Saravanan Vijayakumar
- Division of Bioinformatics, ICMR-Rajendra Memorial Institute of Medical Sciences, Patna, Bihar, India.
| |
Collapse
|
7
|
Monteiro LM, Löbenberg R, Barbosa EJ, de Araujo GLB, Sato PK, Kanashiro E, de Araujo Eliodoro RH, Rocha M, de Freitas VLT, Fotaki N, Bou-Chacra NA. Oral administration of buparvaquone nanostructured lipid carrier enables in vivo activity against Leishmania infantum. Eur J Pharm Sci 2021; 169:106097. [PMID: 34910988 DOI: 10.1016/j.ejps.2021.106097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, is prevalent in 98 countries with the occurrence of 1.3 million new cases annually. The conventional therapy for visceral leishmaniasis requires hospitalization due to the severe adverse effects of the drugs, which are administered parenterally. Buparvaquone (BPQ) showed in vitro activity against leishmania parasites; nevertheless, it has failed in vivo tests due to its low aqueous solubility. Though, lipid nanoparticles can overcome this holdback. In this study we tested the hypothesis whether BPQ-NLC shows in vivo activity against L. infantum. Two optimized formulations were prepared (V1: 173.9 ± 1.6 nm, 0.5 mg of BPQ/mL; V2: 232.4 ± 1.6 nm, 1.3 mg of BPQ/mL), both showed increased solubility up to 73.00-fold, and dissolution up to 83.29%, while for the free drug it was only 2.89%. Cytotoxicity test showed their biocompatibility (CC50 >554.4 µM). Besides, the V1 dose of 0.3 mg/kg/day for 10 days reduced the parasite burden in 83.4% ±18.2% (p <0.05) in the liver. BPQ-NLC showed similar leishmanicidal activity compared to miltefosine. Therefore, BPQ-NLC is a promising addition to the limited therapeutic arsenal suitable for leishmaniasis oral administration treatment.
Collapse
Affiliation(s)
- Lis Marie Monteiro
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 8613 - 114St NW, T6G 2H7, Edmonton, AB, Canada
| | - Eduardo José Barbosa
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - Gabriel Lima Barros de Araujo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Paula Keiko Sato
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Edite Kanashiro
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil; Seroepidemiology, Cellular, and Molecular Immunology Laboratory - Institute of Tropical Medicine, University of São Paulo, Dr. Enéas de Carvalho Aguiar, 470 - Jardim América, São Paulo, SP, 05403-000, Brazil
| | - Raissa H de Araujo Eliodoro
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Mussya Rocha
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Vera Lúcia Teixeira de Freitas
- Laboratory of Medical Investigation in Immunology (LIM48), Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, IMT2, térreo, 05403-000, São Paulo, SP, Brazil
| | - Nikoletta Fotaki
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Nádia Araci Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Av, 580, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|