1
|
Fang Y, Pan H, Zhu H, Wang H, Ye M, Ren J, Peng J, Li J, Lu X, Huang C. Intranasal LAG3 antibody infusion induces a rapid antidepressant effect via the hippocampal ERK1/2-BDNF signaling pathway in chronically stressed mice. Neuropharmacology 2024; 259:110118. [PMID: 39153731 DOI: 10.1016/j.neuropharm.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The decline of microglia in the dentate gyrus is a new phenomenon that may explain the pathogenesis of depression, and reversing this decline has an antidepressant effect. The development of strategies that restore the function of dentate gyrus microglia in under stressful conditions is becoming a new focus. Lymphocyte-activating gene-3 (LAG3) is an immune checkpoint expressed by immune cells including microglia. One of its functions is to suppress the expansion of immune cells. In a recent study, chronic systemic administration of a LAG3 antibody that readily penetrates the brain was reported to reverse chronic stress-induced hippocampal microglia decline and depression-like behaviors. We showed here that a single intranasal infusion of a LAG3 antibody (In-LAG3 Ab) reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in a dose-dependent manner, which was accompanied by an increase in brain-derived neurotrophic factor (BDNF) in the dentate gyrus. Infusion of an anti-BDNF antibody into the dentate gyrus, construction of knock-in mice with the BDNF Val68Met allele, or treatment with the BDNF receptor antagonist K252a abolished the antidepressant effect of In-LAG3 Ab. Activation of extracellular signal-regulated kinase1/2 (ERK1/2) is required for the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and BDNF decrease in the dentate gyrus. Moreover, both inhibition and depletion of microglia prevented the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and impairment of ERK1/2-BDNF signaling in the dentate gyrus. These results suggest that In-LAG3 Ab exhibits an antidepressant effect through microglia-mediated activation of ERK1/2 and synthesis of BDNF in the dentate gyrus.
Collapse
Affiliation(s)
- Yunli Fang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hainan Pan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Hanxiao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Minxiu Ye
- Department of Pharmacy, Kunshan Hospital of Traditional Chinese Medicine, #388 Zuchongzhi South Road, Kunshan, Suzhou, 215300, China
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jinxin Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, #288 Yanling East Road, Changzhou 223000, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Long H, Chen Z, Xu X, Zhou Q, Fang Z, Lv M, Yang XH, Xiao J, Sun H, Fan M. Elucidating genetic and molecular basis of altered higher-order brain structure-function coupling in major depressive disorder. Neuroimage 2024; 297:120722. [PMID: 38971483 DOI: 10.1016/j.neuroimage.2024.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/β-hydrolase domain-containing 6 (ABHD6), β 1,3-N-acetylglucosaminyltransferase-9(β3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, β3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zihao Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhaolin Fang
- Network Information Center, Zhejiang University of Technology, Hangzhou 310023, China
| | - Mingqi Lv
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Shafique H, Demers JC, Biesiada J, Golani LK, Cerne R, Smith JL, Szostak M, Witkin JM. ( R)-(-)-Ketamine: The Promise of a Novel Treatment for Psychiatric and Neurological Disorders. Int J Mol Sci 2024; 25:6804. [PMID: 38928508 PMCID: PMC11203826 DOI: 10.3390/ijms25126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
NMDA receptor antagonists have potential for therapeutics in neurological and psychiatric diseases, including neurodegenerative diseases, epilepsy, traumatic brain injury, substance abuse disorder (SUD), and major depressive disorder (MDD). (S)-ketamine was the first of a novel class of antidepressants, rapid-acting antidepressants, to be approved for medical use. The stereoisomer, (R)-ketamine (arketamine), is currently under development for treatment-resistant depression (TRD). The compound has demonstrated efficacy in multiple animal models. Two clinical studies disclosed efficacy in TRD and bipolar depression. A study by the drug sponsor recently failed to reach a priori clinical endpoints but post hoc analysis revealed efficacy. The clinical value of (R)-ketamine is supported by experimental data in humans and rodents, showing that it is less sedating, does not produce marked psychotomimetic or dissociative effects, has less abuse potential than (S)-ketamine, and produces efficacy in animal models of a range of neurological and psychiatric disorders. The mechanisms of action of the antidepressant effects of (R)-ketamine are hypothesized to be due to NMDA receptor antagonism and/or non-NMDA receptor mechanisms. We suggest that further clinical experimentation with (R)-ketamine will create novel and improved medicines for some of the neurological and psychiatric disorders that are underserved by current medications.
Collapse
Affiliation(s)
- Hana Shafique
- Duke University School of Medicine, Durham, NC 27710, USA
| | - Julie C. Demers
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Julia Biesiada
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Lalit K. Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Marta Szostak
- Department of Psychology, SWPS University, 03-815 Warsaw, Poland;
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA
| |
Collapse
|
4
|
Mamelak M. Depression and the Glutamate/GABA-Glutamine Cycle. Curr Neuropharmacol 2024; 23:75-84. [PMID: 39150032 PMCID: PMC11519819 DOI: 10.2174/1570159x22666240815120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 08/17/2024] Open
Abstract
Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypothalamic- pituitary axis in response to stress, the development of oxidative stress and neuroinflammation, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pressure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA-glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of depression. GHB is a GABAB agonist and restores the normal balance between cholinergic and monoaminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pressure. GHB's metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glutamate. In both animals and man, GHB increases the level of brain glutamate.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
6
|
Śladowska K, Kawalec P, Brzostek T, Pilc A. Potential use of psilocybin drugs in the treatment of depression. Expert Opin Emerg Drugs 2023; 28:241-256. [PMID: 37817501 DOI: 10.1080/14728214.2023.2264180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Depression is a common disabling psychiatric disorder, which - in extreme cases - may lead to suicide if untreated or inadequately treated. Despite the availability of various treatments for depression, including pharmacotherapy, there is still a need to search for new agents with higher effectiveness and faster onset of action, especially for patients with treatment-resistant depression. AREAS COVERED A substance that has attracted considerable attention for nearly a decade is psilocybin, a natural psychedelic found in psilocybin mushrooms. In this study, we evaluated the efficacy and safety of psilocybin in the treatment of depression, based on pivotal randomized clinical trials. Moreover, we used findings from observational studies regarding recreational use. We also looked at ongoing clinical trials and discussed the registration status and clinical potential of the drug. EXPERT OPINION Clinical phase I-II trials published to date reported promising results for psilocybin in the treatment of patients with major depressive disorder and treatment-resistant depression, in a relatively short time after administration. However, before psilocybin is approved for use and administered to patients with depression, the results of large ongoing phase III clinical trials are needed to confirm its efficacy and safety and to change the way it is perceived by physicians and patients.
Collapse
Affiliation(s)
- Katarzyna Śladowska
- Department of Nutrition and Drug Research, Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Kawalec
- Department of Nutrition and Drug Research, Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Brzostek
- Department of Internal and Community Nursing, Institute of Nursing and Midwifery, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Andrzej Pilc
- Department of Nutrition and Drug Research, Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
7
|
Banushi B, Polito V. A Comprehensive Review of the Current Status of the Cellular Neurobiology of Psychedelics. BIOLOGY 2023; 12:1380. [PMID: 37997979 PMCID: PMC10669348 DOI: 10.3390/biology12111380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Psychedelic substances have gained significant attention in recent years for their potential therapeutic effects on various psychiatric disorders. This review delves into the intricate cellular neurobiology of psychedelics, emphasizing their potential therapeutic applications in addressing the global burden of mental illness. It focuses on contemporary research into the pharmacological and molecular mechanisms underlying these substances, particularly the role of 5-HT2A receptor signaling and the promotion of plasticity through the TrkB-BDNF pathway. The review also discusses how psychedelics affect various receptors and pathways and explores their potential as anti-inflammatory agents. Overall, this research represents a significant development in biomedical sciences with the potential to transform mental health treatments.
Collapse
Affiliation(s)
- Blerida Banushi
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vince Polito
- School of Psychological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
8
|
Kalfas M, Taylor RH, Tsapekos D, Young AH. Psychedelics for treatment resistant depression: are they game changers? Expert Opin Pharmacother 2023; 24:2117-2132. [PMID: 37947195 DOI: 10.1080/14656566.2023.2281582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION A new era of treatment for adults with treatment-resistant depression (TRD), which involves psychedelic substances, is dawning. Emerging evidence indicates that psychedelics can exert antidepressant effects through multiple neurobiological and psychological mechanisms. However, it remains to be seen if these new treatments will revolutionize the treatment of TRD. AREAS COVERED The present review focuses on the efficacy of serotoninergic psychedelics psilocybin, lysergic acid diethylamide (LSD), N,N-dimethyltryptamine (DMT), ayahuasca, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and mescaline (3,4,5-trimethoxyphenethylamine), as well as 3,4-methylenedioxymethamphetamine (MDMA), for TRD. A systematic search was conducted for psilocybin in TRD as emerging trials had not yet been subject to review. A narrative review summarized findings on other psychedelics. EXPERT OPINION Psychedelic therapy has created a paradigm shift in the treatment of TRD, as it can maximize therapeutic benefits and minimize potential risks. Psilocybin holds promise as a potential game-changer in the treatment of TRD, with initial evidence suggesting a rapid antidepressant effect sustained for some responders for at least 3 months. Nevertheless, further adequately powered, double-blind, comparator-controlled trials are required to explore and clarify the mechanisms of action and long-term effects of psychedelics in TRD. Psychedelics also hold promise for other psychiatric conditions, such as bipolar depression and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Michail Kalfas
- Department of Psychological Medicine, King's College London, London, UK
| | - Rosie H Taylor
- Department of Psychological Medicine, King's College London, London, UK
| | | | - Allan H Young
- Department of Psychological Medicine, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Witkin JM, Golani LK, Smith JL. Clinical pharmacological innovation in the treatment of depression. Expert Rev Clin Pharmacol 2023; 16:349-362. [PMID: 37000975 DOI: 10.1080/17512433.2023.2198703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Deficiencies in standard of care antidepressants are driving novel drug discovery. A new age of antidepressant medications has emerged with the introduction of rapid-acting antidepressants with efficacy in treatment-resistant patients. AREAS COVERED The newly approved medicines and those in clinical development for major depressive disorder (MDD) are documented in this scoping review of newly approved and emerging antidepressants. Compounds are evaluated for clinical efficacy, tolerability, and safety and compared to those of standard of care medicines. EXPERT OPINION A new age of antidepressant discovery relies heavily on glutamatergic mechanisms. New medicines based upon the model of ketamine have been delivered and are in clinical development. Rapid onset and the ability to impact treatment-resistant depression, raises the question of the best first-line medicines for patients. Drugs with improvements in tolerability are being investigated (e.g. mGlu2/3 receptor antagonists, AMPA receptor potentiators, and novel NMDA receptor modulators). Multiple companies are working toward the identification of novel psychedelic drugs where the requirement for psychedelic activity is not fully known. Gaps still exist - methods for matching patients with specific medicines are needed, and medicines for the prevention of MDD and its disease progression need research attention.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN USA
| | - Lalit K Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| |
Collapse
|
10
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
3,4-Dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide analogs act as potential AMPA receptor potentiators with antidepressant activity. Eur J Med Chem 2023; 251:115252. [PMID: 36924669 DOI: 10.1016/j.ejmech.2023.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Major depressive disorder is a common psychiatric disorder, with ∼30% of patients suffering from treatment-resistant depression. Based on preclinical studies on ketamine, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) activation may be a promising therapeutic approach. In this study, we synthesized a series of novel 3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide analogs and analyzed their potential as AMPAR potentiators. Compounds 5aa and 7k exhibited high potentiation with little agonist activity in a high-throughput screen using a calcium influx assay in cultured hippocampal primary neurons. In rats, compound 7k had better pharmacokinetic properties and oral bioavailability (F = 67.19%); it also exhibited an acceptable safety profile in vital internal organs based on hematoxylin and eosin staining. We found that 7k produced a rapid antidepressant-like effect in chronic restraint stress-induced mice 1 h after intraperitoneal administration. Our study presented a series of novel AMPAR potentiators and identified 7k as a promising drug-like candidate against major depressive disorders.
Collapse
|
12
|
Chaki S, Watanabe M. Antidepressants in the post-ketamine Era: Pharmacological approaches targeting the glutamatergic system. Neuropharmacology 2023; 223:109348. [PMID: 36423706 DOI: 10.1016/j.neuropharm.2022.109348] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The efficacy of currently available medications for depression is unsatisfactory, and that has spurred the development of novel antidepressants based on a hypothesis other than the monoamine hypothesis. Recent studies have revealed the importance of the glutamatergic system as a drug target for depression, and the validity of this hypothesis has been underpinned by the discovery of the antidepressant effects of ketamine, leading to the market launch of Spravato® nasal spray which delivers (S)-ketamine (esketamine). However, both ketamine and esketamine have unwanted adverse effects that hinder their routine use in daily practice. Extensive studies have elucidated the mechanisms underlying the antidepressant effects of ketamine, and that has encouraged numerous drug discovery activities to search for agents that retain a ketamine-like antidepressant profile but with lesser adverse effect liabilities. The discovery activities have included attempts to identify 1) the active substance(s) in the circulation after ketamine administration and 2) agents that act on the proposed mechanisms of action of ketamine. Clinical trials of agents discovered in the course of these activities are underway, and in 2022, AUVELITY™ (AXS-05; dextromethorphan with bupropion) was approved by the United States Food and Drug Administration. Drug development of post-ketamine agents should provide novel antidepressants that are safer, but as potent and rapidly acting as ketamine.
Collapse
Affiliation(s)
- Shigeyuki Chaki
- Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan.
| | - Mai Watanabe
- Taisho Pharmaceutical R&D Inc., 350 Mt. Kemble Avenue, Morristown, NJ 07960, USA.
| |
Collapse
|
13
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|