1
|
Zhang N, Nitsche MA, Miao Y, Xiong Z, Vicario CM, Qi F. Transcranial Direct-Current Stimulation Over the Primary Motor Cortex and Cerebellum Improves Balance and Shooting Accuracy in Elite Ice Hockey Players. Int J Sports Physiol Perform 2024; 19:1107-1114. [PMID: 39179224 DOI: 10.1123/ijspp.2024-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 08/26/2024]
Abstract
PURPOSE To investigate the effects of transcranial direct-current stimulation (tDCS) applied over the primary motor cortex (M1) and cerebellum on balance control and shooting accuracy in elite ice hockey players. METHODS Twenty-one elite ice hockey players underwent anodal tDCS over the M1 (a-tDCSM1), anodal tDCS over the cerebellum (a-tDCSCB), concurrent dual-site anodal tDCS over the M1 and the cerebellum (a-tDCSM1+CB), and sham stimulation (tDCSSHAM). Before and after receiving tDCS (2 mA for 15 min), participants completed an ice hockey shooting-accuracy test, Pro-Kin balance test (includes stance test and proprioceptive assessment), and Y-balance test in randomized order. RESULTS For static balance performance, the ellipse area in the 2-legged stance with eyes open and the 1-legged stance with the dominant leg significantly improved following a-tDCSM1, a-tDCSCB, and concurrent dual-site a-tDCSM1+CB, compared with tDCSSHAM (all P < .05, Cohen d = 0.64-1.06). In dynamic balance performance, the average trace error of the proprioceptive assessment and the composite score of the Y-balance test with the dominant leg significantly improved following a-tDCSM1 and concurrent dual-site a-tDCSM1+CB (all P < .05, Cohen d = 0.77-1.00). For the ice hockey shooting-accuracy test, shooting-accuracy while standing on the unstable platform significantly increased following a-tDCSM1 (P = .010, Cohen d = 0.81) and a-tDCSCB (P = .010, Cohen d = 0.92) compared with tDCSSHAM. CONCLUSION tDCS could potentially be a valuable tool in enhancing static and dynamic balance and shooting accuracy on unstable platforms in elite ice hockey players.
Collapse
Affiliation(s)
- Na Zhang
- Sports Coaching College, Beijing Sport University, Beijing, BJ, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, BJ, China
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Yu Miao
- Sports Coaching College, Beijing Sport University, Beijing, BJ, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, BJ, China
| | - Zheng Xiong
- China Ice Sports College, Beijing Sport University, Beijing, BJ, China
| | - Carmelo Mario Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina, Italy
| | - Fengxue Qi
- Sports Coaching College, Beijing Sport University, Beijing, BJ, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, BJ, China
| |
Collapse
|
2
|
Winker M, Hoffmann S, Laborde S, Javelle F. The acute effects of motor cortex transcranial direct current stimulation on athletic performance in healthy adults: A systematic review and meta-analysis. Eur J Neurosci 2024; 60:5086-5110. [PMID: 39120435 DOI: 10.1111/ejn.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024]
Abstract
This systematic review and meta-analysis assesses independently the acute effects of anodal and cathodal motor cortex transcranial direct current stimulation (tDCS) on athletic performance in healthy adults. Besides, it evaluates the unique and conjoint effects of potential moderators (i.e., stimulation parameters, exercise type, subjects' training status and risk of bias). Online database search was performed from inception until March 18th 2024 (PROSPERO: CRD42023355461). Forty-three controlled trials were included in the systematic review, 40 in the anodal tDCS meta-analysis (68 effects), and 9 (11 effects) in the cathodal tDCS meta-analysis. Performance enhancement between pre- and post-stimulation was the main outcome measure considered. The anodal tDCS effects on physical performance were small to moderate (g = .29, 95%CI [.18, .40], PI = -.64 to 1.23, I2 = 64.0%). Exercise type, training status and use of commercial tDCS were significant moderators of the results. The cathodal tDCS effects were null (g = .04, 95%CI [-.05, .12], PI = -.14 to .23, I2 = 0%), with a small to moderate heterogeneity entirely due to sampling error, thus impairing further moderator analysis. These findings hold significant implications for the field of brain stimulation and physical performance, as they not only demonstrate a small to moderate effect of acute tDCS but also identify specific categories of individuals, devices and activities that are more susceptible to improvements. By addressing the multidimensional factors influencing the mechanisms of tDCS, we also provide suggestions for future research.
Collapse
Affiliation(s)
- Matteo Winker
- University of Cologne, Cologne, Germany
- Institute for Sport and Sport Science, Performance and Health (Sports Medicine), TU Dortmund University, Dortmund, Germany
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sven Hoffmann
- Psychological Methods and Evaluation, Institute of Psychology, University of Hagen, Hagen, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- NeuroPsychoImmunology research unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
3
|
Yu Y, Zhang X, Nitsche MA, Vicario CM, Qi F. Does a single session of transcranial direct current stimulation enhance both physical and psychological performance in national- or international-level athletes? A systematic review. Front Physiol 2024; 15:1365530. [PMID: 38962069 PMCID: PMC11220198 DOI: 10.3389/fphys.2024.1365530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Some studies showed that a single session of transcranial direct current stimulation (tDCS) has the potential of modulating motor performance in healthy and athletes. To our knowledge, previously published systematic reviews have neither comprehensively investigated the effects of tDCS on athletic performance in both physical and psychological parameters nor investigated the effects of tDCS on high-level athletes. We examined all available research testing a single session of tDCS on strength, endurance, sport-specific performance, emotional states and cognitive performance for better application in competition and pre-competition trainings of national- or international-level athletes. A systematic search was conducted in PubMed, Web of Science, EBSCO, Embase, and Scopus up until to June 2023. Studies were eligible when participants had sports experience at a minimum of state and national level competitions, underwent a single session of tDCS without additional interventions, and received either sham tDCS or no interventions in the control groups. A total of 20 experimental studies (224 participants) were included from 18 articles. The results showed that a single tDCS session improved both physical and psychological parameters in 12 out of the 18 studies. Of these, six refer to the application of tDCS on the motor system (motor cortex, premotor cortex, cerebellum), five on dorsolateral prefrontal cortex and two on temporal cortex. The most sensitive to tDCS are strength, endurance, and emotional states, improved in 67%, 75%, and 75% of studies, respectively. Less than half of the studies showed improvement in sport-specific tasks (40%) and cognitive performance (33%). We suggest that tDCS is an effective tool that can be applied to competition and pre-competition training to improve athletic performance in national- or international-level athletes. Further research would explore various parameters (type of sports, brain regions, stimulation protocol, athlete level, and test tasks) and neural mechanistic studies in improving efficacy of tDCS interventions. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022326989, identifier CRD42022326989.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Xinbi Zhang
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, Bielefeld, Germany
| | - Carmelo M. Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural Studies, University of Messina, Messina, Italy
| | - Fengxue Qi
- Key Laboratory of Sport Training of General Administration of Sport of China, Beijing Sport University, Beijing, China
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing, China
| |
Collapse
|
4
|
Caccianiga G, Mooney RA, Celnik PA, Cantarero GL, Brown JD. Anodal cerebellar t-DCS impacts skill learning and transfer on a robotic surgery training task. Sci Rep 2023; 13:21394. [PMID: 38123594 PMCID: PMC10733429 DOI: 10.1038/s41598-023-47404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The cerebellum has demonstrated a critical role during adaptation in motor learning. However, the extent to which it can contribute to the skill acquisition of complex real-world tasks remains unclear. One particularly challenging application in terms of motor activities is robotic surgery, which requires surgeons to complete complex multidimensional visuomotor tasks through a remotely operated robot. Given the need for high skill proficiency and the lack of haptic feedback, there is a pressing need for understanding and improving skill development. We investigated the effect of cerebellar transcranial direct current stimulation applied during the execution of a robotic surgery training task. Study participants received either real or sham stimulation while performing a needle driving task in a virtual (simulated) and a real-world (actual surgical robot) setting. We found that cerebellar stimulation significantly improved performance compared to sham stimulation at fast (more demanding) execution speeds in both virtual and real-world training settings. Furthermore, participants that received cerebellar stimulation more effectively transferred the skills they acquired during virtual training to the real world. Our findings underline the potential of non-invasive brain stimulation to enhance skill learning and transfer in real-world relevant tasks and, more broadly, its potential for improving complex motor learning.
Collapse
Affiliation(s)
- Guido Caccianiga
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, 21218, USA.
- Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Germany.
| | - Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, John Hopkins Medical Institute, Baltimore, 21218, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, John Hopkins Medical Institute, Baltimore, 21218, USA
- Shirley Ryan AbilityLab, Chicago, 60611, USA
| | - Gabriela L Cantarero
- Department of Physical Medicine and Rehabilitation, John Hopkins Medical Institute, Baltimore, 21218, USA
| | - Jeremy D Brown
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, 21218, USA
| |
Collapse
|
5
|
Anoushiravani S, Alizadehgoradel J, Iranpour A, Yousefi Bilehsavar O, Pouresmali A, Nitsche MA, Salehinejad MA, Mosayebi-Samani M, Zoghi M. The impact of bilateral anodal transcranial direct current stimulation of the premotor and cerebellar cortices on physiological and performance parameters of gymnastic athletes: a randomized, cross-over, sham-controlled study. Sci Rep 2023; 13:10611. [PMID: 37391555 PMCID: PMC10313825 DOI: 10.1038/s41598-023-37843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023] Open
Abstract
Professional sports performance relies critically on the interaction between the brain and muscles during movement. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique which modulates cortical excitability and can be used to improve motor performance in athletes. The present study aimed to investigate the effect of bilateral anodal tDCS (2 mA, 20 min) over the premotor cortex or cerebellum on motor and physiological functions and peak performance of professional gymnastics athletes. Seventeen professional gymnastics athletes participated in a randomized, sham-controlled, crossover study. In this study, we assessed the efficacy of two anodal tDCS protocols (2 mA, 20 min) with stimulation over the bilateral premotor cortex or cerebellum with the return electrodes placed over the opposite supraorbital areas. Power speed, strength coordination, endurance, static and dynamic strength, static and dynamic flexibility, and rating of perceived exertion were measured before and immediately after tDCS interventions (bilateral anodal tDCS over premotor cortices, anodal tDCS over the cerebellum, and sham tDCS). Additionally, physiological muscle performance parameters, including maximum voluntary isometric contraction (MVIC) of upper body muscles, were assessed during tDCS. Bilateral anodal tDCS over the premotor cortex, compared to anodal tDCS over the cerebellum and sham tDCS conditions, significantly improved power speed, strength coordination, and static and dynamic strength variables of professional gymnastics athletes. Furthermore, bilateral anodal tDCS over the cerebellum, compared to sham tDCS, significantly improved strength coordination. Moreover, bilateral premotor anodal tDCS significantly increased MVIC of all upper body muscles during stimulation, while anodal tDCS over the cerebellum increased MVIC in only some muscles. Bilateral anodal tDCS over the premotor cortex, and to a minor degree over the cerebellum, might be suited to improve some aspects of motor and physiological functions and peak performance levels of professional gymnastics athletes.Clinical Trial Registration ID: IRCT20180724040579N2.
Collapse
Affiliation(s)
- Sajjad Anoushiravani
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Jaber Alizadehgoradel
- Department of Psychology, Faculty of Humanities, University of Zanjan, Zanjan, Iran.
| | - Asgar Iranpour
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Omid Yousefi Bilehsavar
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asghar Pouresmali
- Department of Family Health, Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Maryam Zoghi
- Discipline of Physiotherapy, Institute of Health and Wellbeing, Federation University, Victoria, Australia
| |
Collapse
|
6
|
Bonder IJ, Shim AL. In-Season Training Model for National Association of Intercollegiate Athletics Female Basketball Players Using “Microdosed” Programming. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Park SB, Han DH, Hong J, Lee JW. Transcranial Direct Current Stimulation of Motor Cortex Enhances Spike Performances of Professional Female Volleyball Players. J Mot Behav 2022; 55:18-30. [PMID: 35726151 DOI: 10.1080/00222895.2022.2090489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to investigate effects of brain excitability by transcranial direct current stimulation (tDCS) on spike performances of professional female volleyball players. Thirteen professional female volleyball players were recruited for participation. We performed a randomized single-blind, SHAM-stimulus controlled, and counter-balanced crossover design with two interventions in this study. An anodal tDCS current was applied over the primary motor cortex (M1) for 20 min at 2 mA. In the SHAM intervention, the current was first applied for 30 s, after which it was terminated. Exercise performance assessment which comprised spike performance (spike ball speed, spiking consistency), two vertical jumps (jump and reach: JaR, countermovement jump: CMJ), bench-press and back-squat one-repetition maximum (1RM) were tested pre- and post-intervention. Results indicated that spike ball speed and spiking consistency following tDCS were significantly higher than those after SHAM intervention (both p < 0.05). However, JaR and CMJ did not show any significant differences between tDCS and SHAM intervention groups (both p > 0.05). There was no significant difference in bench-press and back-squat 1RM between two groups either (both p > 0.05). These findings suggest that tDCS could be effective in enhancing motor coordination performances of professional female volleyball athletes.
Collapse
Affiliation(s)
- Seung-Bo Park
- Department of Sports Culture, Dongguk University, Seoul, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Junggi Hong
- Graduate School of Sports Medicine, CHA University, Gyeonggi, Republic of Korea
| | - Jea-Woog Lee
- Department of Information & Technology in Sport, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|