1
|
Anastasilakis AD, Yavropoulou MP, Palermo A, Makras P, Paccou J, Tabacco G, Naciu AM, Tsourdi E. Romosozumab versus parathyroid hormone receptor agonists: which osteoanabolic to choose and when? Eur J Endocrinol 2024; 191:R9-R21. [PMID: 38938063 DOI: 10.1093/ejendo/lvae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Osteoanabolic agents are used as a first line treatment in patients at high fracture risk. The PTH receptor 1 (PTH1R) agonists teriparatide (TPTD) and abaloparatide (ABL) increase bone formation, bone mineral density (BMD), and bone strength by activating PTH receptors on osteoblasts. Romosozumab (ROMO), a humanized monoclonal antibody against sclerostin, dramatically but transiently stimulates bone formation and persistently reduces bone resorption. Osteoanabolic agents increase BMD and bone strength while being more effective than antiresorptives in reducing fracture risk in postmenopausal women. However, direct comparisons of the antifracture benefits of osteoanabolic therapies are limited. In a direct comparison of TPTD and ABL, the latter resulted in greater BMD increases at the hip. While no differences in vertebral or non-vertebral fracture risk were observed between the two drugs, ABL led to a greater reduction of major osteoporotic fractures. Adverse event profiles were similar between the two agents except for hypercalcemia, which occurred more often with TPTD. No direct comparisons of fracture risk reduction between ROMO and the PTH1R agonists exist. Individual studies have shown greater increases in BMD and bone strength with ROMO compared with TPTD in treatment-naive women and in women previously treated with bisphosphonates. Some safety aspects, such as a history of tumor precluding the use of PTH1R agonists, and a history of major cardiovascular events precluding the use of ROMO, should also be considered when choosing between these agents. Finally, convenience of administration, reimbursement by national health systems and length of clinical experience may influence patient choice.
Collapse
Affiliation(s)
| | - Maria P Yavropoulou
- Endocrinology Unit, 1st Department of Propaedeutic and Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Laikon University Hospital of Athens, Athens 115 27, Greece
| | - Andrea Palermo
- Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome 00128, Italy
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome 00128, Italy
| | - Polyzois Makras
- Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens 115 25, Greece
| | - Julien Paccou
- Department of Rheumatology, CHU Lille, Lille 59000, France
| | - Gaia Tabacco
- Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome 00128, Italy
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome 00128, Italy
| | - Anda Mihaela Naciu
- Unit of Metabolic Bone and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Rome 00128, Italy
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome 00128, Italy
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden, Dresden 01307, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
2
|
Bila J, Katodritou E, Guenova M, Basic-Kinda S, Coriu D, Dapcevic M, Ibricevic-Balic L, Ivanaj A, Karanfilski O, Zver S, Beksac M, Terpos E, Dimopoulos MA. Bone Marrow Microenvironment Interplay and Current Clinical Practice in Multiple Myeloma: A Review of the Balkan Myeloma Study Group. J Clin Med 2021; 10:jcm10173940. [PMID: 34501388 PMCID: PMC8432054 DOI: 10.3390/jcm10173940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The course of multiple myeloma (MM) is influenced by a variety of factors, including the specificity of the tumour microenvironment (TME). The aim of this review is to provide insight into the interplay of treatment modalities used in the current clinical practice and TME. Bortezomib-based triplets are the standard for MM first-line treatment. Bortezomib is a proteasome inhibitor (PI) which inhibits the nuclear factor kappa B (NF-κB) pathway. However, bortezomib is decreasing the expression of chemokine receptor CXCR4 as well, possibly leading to the escape of extramedullary disease. Immunomodulatory drugs (IMiDs), lenalidomide, and pomalidomide downregulate regulatory T cells (Tregs). Daratumumab, anti-cluster of differentiation 38 (anti-CD38) monoclonal antibody (MoAb), downregulates Tregs CD38+. Bisphosphonates inhibit osteoclasts and angiogenesis. Sustained suppression of bone resorption characterises the activity of MoAb denosumab. The plerixafor, used in the process of stem cell mobilisation and harvesting, block the interaction of chemokine receptors CXCR4-CXCL12, leading to disruption of MM cells’ interaction with the TME, and mobilisation into the circulation. The introduction of several T-cell-based immunotherapeutic modalities, such as chimeric-antigen-receptor-transduced T cells (CAR T cells) and bispecific antibodies, represents a new perspective in MM treatment affecting TME immune evasion. The optimal treatment approach to MM patients should be adjusted to all aspects of the individual profile including the TME niche.
Collapse
Affiliation(s)
- Jelena Bila
- Clinic of Hematology, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-638-292-992
| | - Eirini Katodritou
- Department of Hematology, Theagenio Cancer Hospital, 54639 Thessaloniki, Greece;
| | - Margarita Guenova
- Laboratory of Haematopathology and Immunology, National Specialised Hospital for Active Treatment of Haematological Diseases, 1756 Sofia, Bulgaria;
| | - Sandra Basic-Kinda
- Divison of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Daniel Coriu
- Centre of Hematology and Bone Marrow Transplant, “Fundeni” Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania;
| | - Milena Dapcevic
- Division of Hematology, Clinical Center of Montenegro, Podgorica 81000, Montenegro;
| | - Lejla Ibricevic-Balic
- Clinic of Hematology, University Clinical Center of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Arben Ivanaj
- Department of Hematology, University Medical Center “Mother Teresa”, 1001 Tirana, Albania;
| | - Oliver Karanfilski
- University Clinic of Hematology, Faculty of Medicine, University of Skopje, 1000 Skopje, North Macedonia;
| | - Samo Zver
- Department of Hematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Meral Beksac
- Department of Hematology, Tissue Typing Laboratory and Donor Registry, Faculty of Medicine, University of Ankara, Ankara 06590, Turkey;
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.T.); (M.A.D.)
| | - Meletios Athanassios Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.T.); (M.A.D.)
| |
Collapse
|
3
|
Mukkamalla SKR, Malipeddi D. Myeloma Bone Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:6208. [PMID: 34201396 PMCID: PMC8227693 DOI: 10.3390/ijms22126208] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic clonal proliferation of plasma cells in the bone marrow microenvironment, characterized by overproduction of heavy- and light-chain monoclonal proteins (M-protein). These proteins are mainly found in the serum and/or urine. Reduction in normal gammaglobulins (immunoparesis) leads to an increased risk of infection. The primary site of origin is the bone marrow for nearly all patients affected by MM with disseminated marrow involvement in most cases. MM is known to involve bones and result in myeloma bone disease. Osteolytic lesions are seen in 80% of patients with MM which are complicated frequently by skeletal-related events (SRE) such as hypercalcemia, bone pain, pathological fractures, vertebral collapse, and spinal cord compression. These deteriorate the patient's quality of life and affect the overall survival of the patient. The underlying pathogenesis of myeloma bone disease involves uncoupling of the bone remodeling processes. Interaction of myeloma cells with the bone marrow microenvironment promotes the release of many biochemical markers including osteoclast activating factors and osteoblast inhibitory factors. Elevated levels of osteoclast activating factors such as RANK/RANKL/OPG, MIP-1-α., TNF-α, IL-3, IL-6, and IL-11 increase bone resorption by osteoclast stimulation, differentiation, and maturation, whereas osteoblast inhibitory factors such as the Wnt/DKK1 pathway, secreted frizzle related protein-2, and runt-related transcription factor 2 inhibit osteoblast differentiation and formation leading to decreased bone formation. These biochemical factors also help in development and utilization of appropriate anti-myeloma treatments in myeloma patients. This review article summarizes the pathophysiology and the recent developments of abnormal bone remodeling in MM, while reviewing various approved and potential treatments for myeloma bone disease.
Collapse
Affiliation(s)
| | - Dhatri Malipeddi
- Internal Medicine, Canton Medical Education Foundation/NEOMED, Canton, OH 44710, USA;
| |
Collapse
|
4
|
Du JS, Yen CH, Hsu CM, Hsiao HH. Management of Myeloma Bone Lesions. Int J Mol Sci 2021; 22:3389. [PMID: 33806209 PMCID: PMC8036461 DOI: 10.3390/ijms22073389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal plasma-cell proliferation. The survival and prognosis of this condition have been significantly improved by treatment with active anti-MM drugs such as bortezomib or lenalidomide. Further, the discovery of novel agents has recently paved the way for new areas of investigation. However, MM, including myeloma-related bone diseases, remains fatal. Bone disease or bone destruction in MM is a consequence of skeletal involvement with bone pain, spinal cord compression, and bone fracture resulting from osteolytic lesions. These consequences affect disease outcomes, including patients' quality of life and survival. Several studies have sought to better understand MM bone disease (MBD) through the classification of its molecular mechanisms, including osteoclast activation and osteoblast inhibition. Bisphosphonates and the receptor activator of the nuclear factor-kappa B (NF-κB) ligand (RANKL) inhibitor, denosumab, prevent skeletal-related events in MM. In addition, several other bone-targeting agents, including bone-anabolic drugs, are currently used in preclinical and early clinical evaluations. This review summarizes the current knowledge of the pathogenesis of MBD and discusses novel agents that appear very promising and will soon enter clinical development.
Collapse
Affiliation(s)
- Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Emerging Insights on the Biological Impact of Extracellular Vesicle-Associated ncRNAs in Multiple Myeloma. Noncoding RNA 2020; 6:ncrna6030030. [PMID: 32764460 PMCID: PMC7549345 DOI: 10.3390/ncrna6030030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnosis and therapy response prediction, we will report evidence of their potential use as clinical biomarkers.
Collapse
|
6
|
Abstract
STUDY DESIGN In vitro experimental study. OBJECTIVE To investigate the impact of increased osteoblastic activity on the proliferation and survival of multiple myeloma (MM) plasma cells in vitro SUMMARY OF BACKGROUND DATA.: MM is one of representative hematologic malignancies that cause skeletal-related events (SREs) and dysregulation of bone remodeling is known as a key pathomechanism of disease progression and skeletal-related events. However, decreased proliferation of MM at fracture sites is frequently noted in clinical situations regardless of systemic disease activity. METHODS Co-culture under various conditions was used to investigate effects of increased osteoblastic activity on survival and proliferation of MM plasma cells. MM plasma cells were cultured in culture media (control) and co-cultured with human mesenchymal stem cells (hMSCs, group I), osteoblasts (OBs) induced from hMSCs (group II) or bone morphogenic protein-2 (BMP-2, group III). Proliferation measured as extracellular signal-regulated kinase (ERK) and immunoglobulin G (Ig G) expression and apoptosis measured as fluorescence-activated cell sorting (FACS) with annexin V method, caspase-3, and stat-3 expression were assessed for cultured MM plasma cells, along with expression of sclerostin. RESULTS After 72 hours of co-culture, group II and III showed decreased ERK expression compared with controls. Lower Ig G expression was also noted for groups II and III compared with controls. Group I did not show significantly decreased Ig G and ERK expression compared with controls. Expressions of caspase-3 in groups II and III were higher than controls. Co-culture with hMSCs showed decreased caspase-3 expression compared with control. FACS with annexin V showed higher apoptosis in groups II and III. Sclerostin expression was also decreased in osteoblastic conditions compared with the control and hMSCs co-culture condition. CONCLUSION Collectively, our data suggest that increased osteoblastic conditions may provide not only prevention of SREs but also anti-tumor effects on MM cells in the bone marrow environment. LEVEL OF EVIDENCE N/A.
Collapse
|
7
|
Dong M, Jin H, Zuo M, Bai H, Wang L, Shi C, Niu W. The potential effect of Bruton's tyrosine kinase in refractory periapical periodontitis. Biomed Pharmacother 2019; 112:108710. [PMID: 30818138 DOI: 10.1016/j.biopha.2019.108710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023] Open
Abstract
To determine the expression of Bruton's tyrosine kinase (BTK) in refractory periapical periodontitis and analyze the relationship between BTK and bone resorption in refractory periapical periodontitis. The mechanism of bone resorption is also discussed. The OneArray Plus expression microarray was used to screen for genes related to refractory periapical periodontitis. Real-time PCR was used to detect the expression of BTK in refractory periapical periodontitis tissues. A model of periapical periodontitis was established by sealing E.faecalis into the pulp of rats. To establish a model of E.faecalis LTA infection of osteoclasts, the relationship between BTK and bone destruction during refractory periapical periodontitis was analyzed. OneArray Plus expression microarray results showed that we found that the expression of 1787 genes in the two samples was different. After validating these samples, we found that BTK was closely related to refractory periapical periodontitis. The results showed that the expression of BTK in refractory periapical periodontitis tissues was higher than that in normal tissues. Immunohistochemistry, enzyme histochemistry and real-time PCR showed that the BTK expression curve in the experimental model resembled a reverse V shape from week 1 to week 4. Osteoclasts were cultured in vitro and treated with E. faecalis LTA. The expression of BTK in the E. faecalis model was greater than that in the control group. BTK played an important role in the progression of refractory periapical periodontitis.
Collapse
Affiliation(s)
- Ming Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Haiwei Jin
- Department of Oral Anatomy and Physiology, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Meina Zuo
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Hua Bai
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Lina Wang
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Chun Shi
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Weidong Niu
- Department of Endodontics and Periodontics, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
8
|
Bai H, Zhu H, Yan Q, Shen X, Lu X, Wang J, Li J, Chen L. TRPV2-induced Ca 2+-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma. Cell Commun Signal 2018; 16:68. [PMID: 30326911 PMCID: PMC6191893 DOI: 10.1186/s12964-018-0280-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Myeloma bone disease (MBD) can cause bone destruction and increase the level of Ca2+ concentration in the bone marrow microenvironment by stimulating osteoclastic differentiation. Nevertheless, the relationships between MBD and highly efficient stimuli of Ca2+ in multiple myeloma (MM) progression, and possible regulatory mechanisms are poorly defined. Here, we reported that the nonselective cation channel transient receptor potential vanilloid 2 (TRPV2) plays a functional role in Ca2+ oscillations and osteoclastogenesis. METHODS To investigate the expression of TRPV2 in MM, we analyzed publicly available MM data sets and performed immunohistochemistry in MM patients. The correlations between TRPV2 expression levels and osteoclast-related cytokines were analyzed. Fluo-4 staining and ELISA assays were used to assess the regulated function of TRPV2 in intracellular Ca2+ and cytokines. Western blotting and Chromatin immunoprecipitation (ChIP) assays were performed to explore the signaling pathway of TRPV2-induced osteoclastic differentiation. Real-time PCR, Western blotting, ELISA and tartrate-resistant acid phosphatase (TRAP) staining were performed to detect the biological effects of TRPV2 inhibitor on osteoclastogenesis. RESULTS The functional expression of TRPV2, involved in the osteolysis through gating the calcium influx, was changed in the MM cells cultured in a high Ca2+ environment. Mechanistically, TRPV2 modulates nuclear factor-κB ligand (RANKL)-dependent osteoclastic differentiation through the Ca2+-calcineurin-NFAT signaling pathway. Of clinical relevance, systemic administration with SKF96365 could attenuate the MM-induced osteoclast formation in vitro. CONCLUSIONS Our study uncovers the possible roles of TRPV2, which enhances MBD, suggesting that targeting osteocyte-MM cells interactions through blockade of TRPV2 channel may provide a promising treatment strategy in MM.
Collapse
Affiliation(s)
- Hua Bai
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Huayuan Zhu
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Qing Yan
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xuxing Shen
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xiupan Lu
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jianyong Li
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Lijuan Chen
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
9
|
Nguyen TD, Nagamune T, Kawahara M. A Suicide Switch Directly Eliminates Intracellular scFv Oligomers in the Cytoplasm of Mammalian Cells. Biotechnol J 2018; 14:e1800350. [PMID: 30171736 DOI: 10.1002/biot.201800350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/25/2018] [Indexed: 11/10/2022]
Abstract
As intracellular antibodies (intrabodies) are highly promising tools for drug discovery, an innovative antibody screening platform in mammalian cells was previously developed by a single-chain Fv (scFv)-c-kit growth sensor, which successfully selected rabies nucleoprotein and phosphoprotein-specific intrabodies from a synthetic scFv library. Since the scFv-c-kit growth sensor releases a growth signal after forming oligomers due to binding to an oligomeric antigen, it is critical to use a library which does not contain self-oligomeric scFvs to avoid the off-target signal of the growth sensor. Here, a novel method to eliminate self-oligomeric scFvs directly in the cytoplasm of mammalian cells is presented. A suicide switch by fusing an scFv with a cell-death signaling domain to eliminate scFv oligomers is developed. It is found that among four cell-death signaling domains, a suicide switch by fusing scFv with Fas-associated death domain (FADD) can selectively reduce oligomeric scFvs. Furthermore, the library after eliminating scFv oligomers results in higher efficiency in the intrabody selection platform with a growth sensor. Collectively, the scFv-FADD suicide switch can be applied to eliminate oligomeric scFvs from a library, which can consequently improve the quality of intracellular scFv libraries and accelerate the discovery of intrabodies in the future.
Collapse
Affiliation(s)
- Thuy Duong Nguyen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masahiro Kawahara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
10
|
Ma RJ, Zhu ZM, Yuan XL, Jiang L, Yang SW, Yang J, Wang Z, Lei PC, Sun K, Guo JM, Zhang L, Zhang Y. [Significance of changed levels of TRACP-5b, PINP and vitamin D3 before and after the treatment of myeloma disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:685-687. [PMID: 30180474 PMCID: PMC7342840 DOI: 10.3760/cma.j.issn.0253-2727.2018.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 11/05/2022]
|
11
|
Semaphorin 4D correlates with increased bone resorption, hypercalcemia, and disease stage in newly diagnosed patients with multiple myeloma. Blood Cancer J 2018; 8:42. [PMID: 29748532 PMCID: PMC5945651 DOI: 10.1038/s41408-018-0075-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/21/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is characterized by bone destruction due to increased bone resorption and decreased bone formation. Semaphorin 4D (CD100, Sema4D) is expressed by osteoclasts, binds to its receptor Plexin-B1, and acts as a mediator of osteoclast–osteoblast interaction that ultimately inhibits osteoblastic bone formation. Preclinical data suggest that Sema4D/Plexin-B1 pathway is implicated in MM-induced bone disease. However, there is no information on the role of Sema4D in MM patients. Thus, we evaluated Sema4D and Plexin-B1 in six myeloma cells lines in vitro; in the bone marrow plasma (BMP) and serum of 72 newly diagnosed symptomatic MM (NDMM) patients and in 25 healthy controls. Only one myeloma cell line produced high Sema4D. BMP and circulating Sema4D and Plexin-B1 levels were significantly higher in MM patients compared to controls (p < 0.01). Sema4D correlated with serum calcium levels (p < 0.001), increased bone resorption (as assessed by CTX; p < 0.01), and ISS (p < 0.001). There was a trend for higher Sema4D levels in patients with osteolysis (p = 0.07), while patients with diffuse MRI pattern had higher BMP Sema4D levels (p = 0.02). Our data suggest that Sema4D is elevated in MM patients and correlate with adverse myeloma features and increased bone resorption, providing a possible target for novel therapeutic approaches in MM.
Collapse
|
12
|
Bolzoni M, Toscani D, Storti P, Marchica V, Costa F, Giuliani N. Possible targets to treat myeloma-related osteoclastogenesis. Expert Rev Hematol 2018; 11:325-336. [PMID: 29495905 DOI: 10.1080/17474086.2018.1447921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Bone destruction is the hallmark of multiple myeloma (MM). About 80% of MM patients at diagnosis presents myeloma bone disease (MBD) leading to bone pain and pathological fractures, significantly affecting patients' quality of life. Bisphosphonates are the treatment of choice for MBD, but osteolytic lesions remain a critical issue in the current management of MM patients. Several studies clarified the mechanisms involved in MM-induced osteoclast formation and activation, leading to the identification of new possible targets and the development of better bone-directed therapies, that are discussed in this review. Areas covered: This review summarizes the latest advances in the knowledge of the pathophysiology of the osteoclast formation and activation induced by MM cells, and the new therapeutic targets identified. Recently, neutralizing antibodies (i.e. denosumab, siltuximab, daratumumab), as well as recombinant fusion proteins, and receptor molecular inhibitors, have been developed to block these targets. Clinical trials testing their anti-MBD potential are ongoing. The emerging role of exosomes and microRNAs in the regulation of osteoclast differentiation has been also discussed. Expert commentary: Although further studies are needed to arrive at a clinical approving, the basis for the development of better bone-directed therapies has been established.
Collapse
Affiliation(s)
- Marina Bolzoni
- a Department Medicine and Surgery , University of Parma , Parma , Italy
| | - Denise Toscani
- a Department Medicine and Surgery , University of Parma , Parma , Italy
| | - Paola Storti
- a Department Medicine and Surgery , University of Parma , Parma , Italy
| | | | - Federica Costa
- a Department Medicine and Surgery , University of Parma , Parma , Italy
| | - Nicola Giuliani
- a Department Medicine and Surgery , University of Parma , Parma , Italy.,b Hematology and BMT Center , "Azienda Ospedaliero-Universitaria di Parma" , Parma , Italy
| |
Collapse
|
13
|
Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA. Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J 2018; 8:7. [PMID: 29330358 PMCID: PMC5802524 DOI: 10.1038/s41408-017-0037-4] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 12/29/2022] Open
Abstract
Osteolytic bone disease is the hallmark of multiple myeloma, which deteriorates the quality of life of myeloma patients, and it affects dramatically their morbidity and mortality. The basis of the pathogenesis of myeloma-related bone disease is the uncoupling of the bone-remodeling process. The interaction between myeloma cells and the bone microenvironment ultimately leads to the activation of osteoclasts and suppression of osteoblasts, resulting in bone loss. Several intracellular and intercellular signaling cascades, including RANK/RANKL/OPG, Notch, Wnt, and numerous chemokines and interleukins are implicated in this complex process. During the last years, osteocytes have emerged as key regulators of bone loss in myeloma through direct interactions with the myeloma cells. The myeloma-induced crosstalk among the molecular pathways establishes a positive feedback that sustains myeloma cell survival and continuous bone destruction, even when a plateau phase of the disease has been achieved. Targeted therapies, based on the better knowledge of the biology, constitute a promising approach in the management of myeloma-related bone disease and several novel agents are currently under investigation. Herein, we provide an insight into the underlying pathogenesis of bone disease and discuss possible directions for future studies.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|