1
|
Bruton's Tyrosine Kinase Targeting in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22115707. [PMID: 34071917 PMCID: PMC8198777 DOI: 10.3390/ijms22115707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM), a clonal plasma cell disorder, disrupts the bones’ hematopoiesis and microenvironment homeostasis and ability to mediate an immune response against malignant clones. Despite prominent survival improvement with newer treatment modalities since the 2000s, MM is still considered a non-curable disease. Patients experience disease recurrence episodes with clonal evolution, and with each relapse disease comes back with a more aggressive phenotype. Bruton’s Tyrosine Kinase (BTK) has been a major target for B cell clonal disorders and its role in clonal plasma cell disorders is under active investigation. BTK is a cytosolic kinase which plays a major role in the immune system and its related malignancies. The BTK pathway has been shown to provide survival for malignant clone and multiple myeloma stem cells (MMSCs). BTK also regulates the malignant clones’ interaction with the bone marrow microenvironment. Hence, BTK inhibition is a promising therapeutic strategy for MM patients. In this review, the role of BTK and its signal transduction pathways are outlined in the context of MM.
Collapse
|
2
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
3
|
Flinsenberg TWH, Tromedjo CC, Hu N, Liu Y, Guo Y, Thia KYT, Noori T, Song X, Aw Yeang HX, Tantalo DG, Handunnetti S, Seymour JF, Roberts AW, Ritchie D, Koldej R, Neeson PJ, Wang L, Trapani JA, Tam CS, Voskoboinik I. Differential effects of BTK inhibitors ibrutinib and zanubrutinib on NK-cell effector function in patients with mantle cell lymphoma. Haematologica 2020; 105:e76-e79. [PMID: 31171645 DOI: 10.3324/haematol.2019.220590] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Thijs W H Flinsenberg
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Charnelle C Tromedjo
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nan Hu
- BeiGene LTD, Beijing, China
| | - Ye Liu
- BeiGene LTD, Beijing, China
| | | | - Kevin Y T Thia
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tahereh Noori
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Han X Aw Yeang
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniela G Tantalo
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sasanka Handunnetti
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - John F Seymour
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Andrew W Roberts
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - David Ritchie
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia.,The ACRF Translational Research Laboratory; Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rachel Koldej
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.,The ACRF Translational Research Laboratory; Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Paul J Neeson
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Joseph A Trapani
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Constantine S Tam
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia .,Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program and Rosie Lew Immunotherapy Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Robak T, Smolewski P, Robak P, Dreyling M. Mantle cell lymphoma: therapeutic options in transplant-ineligible patients. Leuk Lymphoma 2019; 60:2622-2634. [DOI: 10.1080/10428194.2019.1605511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Pawel Robak
- Department of Experimental Hematology, Medical University of Lodz, Lodz, Poland
| | - Martin Dreyling
- Department of Medicine III, University Hospital Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
5
|
Watterson SH, Liu Q, Beaudoin Bertrand M, Batt DG, Li L, Pattoli MA, Skala S, Cheng L, Obermeier MT, Moore R, Yang Z, Vickery R, Elzinga PA, Discenza L, D’Arienzo C, Gillooly KM, Taylor TL, Pulicicchio C, Zhang Y, Heimrich E, McIntyre KW, Ruan Q, Westhouse RA, Catlett IM, Zheng N, Chaudhry C, Dai J, Galella MA, Tebben AJ, Pokross M, Li J, Zhao R, Smith D, Rampulla R, Allentoff A, Wallace MA, Mathur A, Salter-Cid L, Macor JE, Carter PH, Fura A, Burke JR, Tino JA. Discovery of Branebrutinib (BMS-986195): A Strategy for Identifying a Highly Potent and Selective Covalent Inhibitor Providing Rapid in Vivo Inactivation of Bruton’s Tyrosine Kinase (BTK). J Med Chem 2019; 62:3228-3250. [DOI: 10.1021/acs.jmedchem.9b00167] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Scott H. Watterson
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qingjie Liu
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Myra Beaudoin Bertrand
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Douglas G. Batt
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ling Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mark A. Pattoli
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Stacey Skala
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Mary T. Obermeier
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Robin Moore
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Zheng Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rodney Vickery
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Paul A. Elzinga
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Lorell Discenza
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Celia D’Arienzo
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kathleen M. Gillooly
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Tracy L. Taylor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Claudine Pulicicchio
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Yifan Zhang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Elizabeth Heimrich
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kim W. McIntyre
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Qian Ruan
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard A. Westhouse
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ian M. Catlett
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Naiyu Zheng
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jun Dai
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Galella
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Andrew J. Tebben
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Matt Pokross
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jianqing Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Rulin Zhao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Daniel Smith
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Richard Rampulla
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Alban Allentoff
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Michael A. Wallace
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - John E. Macor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Aberra Fura
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - James R. Burke
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joseph A. Tino
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|
6
|
Jurczak W, Długosz-Danecka M, Wang M. Acalabrutinib for adults with mantle cell lymphoma. Expert Rev Clin Pharmacol 2019; 12:179-187. [PMID: 30638402 DOI: 10.1080/17512433.2019.1568868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Although advances in mantle cell lymphoma (MCL) therapy have improved overall survival (OS), managing relapsed/refractory (R/R) cases remains a great challenge. Bruton tyrosine kinase (BTK) inhibitors have broadened therapeutic options in MCL and became the backbone of second-line strategies. Areas covered: Ibrutinib, the first-in-class BTK inhibitor registered for MCL therapy, is efficient, with clear benefits of its use. However, ibrutinib-related adverse events due to off-target inhibition of other kinases led to the development of more selective molecules with comparable efficacy and better safety profiles. Expert commentary: Acalabrutinib, a new BTK inhibitor, currently being evaluated in numerous clinical studies is approved by FDA in relapsing/refractory MCL. Its role will evolve over the next few years. Efficacy and good tolerability of acalabrutinib gives even greater opportunity for potential upfront use and new therapeutic combinations, including monoclonal antibodies, antibody-drug conjugates, immune checkpoint inhibitors, bcl-2 (B-cell lymphoma-2) or IP3K (phosphoinositide 3-kinase) inhibitors.
Collapse
Affiliation(s)
- Wojciech Jurczak
- a Department of Hematology , Jagiellonian University , Kraków , Poland
| | | | - Michael Wang
- b Department of Lymphoma and Myeloma , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|