Pathophysiological Implications of Urinary Peptides in Hepatocellular Carcinoma.
Cancers (Basel) 2021;
13:cancers13153786. [PMID:
34359689 PMCID:
PMC8345155 DOI:
10.3390/cancers13153786]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary
In this study, the application of capillary electrophoresis mass spectrometry enabled identification of 31 urinary peptides significantly associated with hepatocellular carcinoma diagnosis and prognosis. Further assessment of these peptides lead to prediction of cellular proteases involved in their development namely Meprin A subunit α and Kallikrein-6. Subsequent identification of the proteases was verified by immunohistochemistry in normal liver, cirrhosis and hepatocellular carcinoma. Histopathological assessment of the proteases revealed numerical gradient staining signifying their involvement in liver fibrosis and hepatocellular carcinoma formation. The discovered urinary peptides offered a potential noninvasive tool for diagnosis and prognosis of hepatocellular carcinoma.
Abstract
Hepatocellular carcinoma (HCC) is known to be associated with protein alterations and extracellular fibrous deposition. We investigated the urinary proteomic profiles of HCC patients in this prospective cross sectional multicentre study. 195 patients were recruited from the UK (Coventry) and Germany (Hannover) between 1 January 2013 and 30 June 2019. Out of these, 57 were HCC patients with a background of liver cirrhosis (LC) and 138 were non-HCC controls; 72 patients with LC, 57 with non-cirrhotic liver disease and 9 with normal liver function. Analysis of the urine samples was performed by capillary electrophoresis (CE) coupled to mass spectrometry (MS). Peptide sequences were obtained and 31 specific peptide markers for HCC were identified and further integrated into a multivariate classification model. The peptide model demonstrated 79.5% sensitivity and 85.1% specificity (95% CI: 0.81–0.93, p < 0.0001) for HCC and 4.1-fold increased risk of death (95% CI: 1.7–9.8, p = 0.0005). Proteases potentially involved in HCC progression were mapped to the N- and C-terminal sequence motifs of the CE-MS peptide markers. In silico protease prediction revealed that kallikrein-6 (KLK6) elicits increased activity, whilst Meprin A subunit α (MEP1A) has reduced activity in HCC compared to the controls. Tissue expression of KLK6 and MEP1A was subsequently verified by immunohistochemistry.
Collapse