1
|
Cheng M, Tao X, Wang F, Shen N, Xu Z, Hu Y, Huang P, Luo P, He Q, Zhang Y, Yan F. Underlying mechanisms and management strategies for regorafenib-induced toxicity in hepatocellular carcinoma. Expert Opin Drug Metab Toxicol 2024; 20:907-922. [PMID: 39225462 DOI: 10.1080/17425255.2024.2398628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) accounts for 85% of liver cancer cases and is the third leading cause of cancer death. Regorafenib is a multi-target inhibitor that dramatically prolongs progression-free survival in HCC patients who have failed sorafenib therapy. However, one of the primary factors limiting regorafenib's clinical utilization is toxicity. Using Clinical Trials.gov and PubMed, we gathered clinical data on regorafenib and conducted a extensive analysis of the medication's adverse reactions and mechanisms. Next, we suggested suitable management techniques to improve regorafenib's effectiveness. AREAS COVERED We have reviewed the mechanisms by which regorafenib-induced toxicity occurs and general management strategies through clinical trials of regorafenib. Furthermore, by examining the literature on regorafenib and other tyrosine kinase inhibition, we summarized the mechanics of the onset of regorafenib toxicity and mechanism-based intervention strategies by reviewing the literature related to regorafenib and other tyrosine kinase inhibition. EXPERT OPINION One of the primary factors restricting regorafenib's clinical utilization and combination therapy is its toxicity reactions. To optimize regorafenib treatment regimens, it is especially important to further understand the specific toxicity mechanisms of regorafenib as a multi-kinase inhibitor.
Collapse
Affiliation(s)
- Mengting Cheng
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Yuhuai Hu
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Fangjie Yan
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Nishioka S, Watabe S, Yanagisawa Y, Sayama K, Kizaki H, Imai S, Someya M, Taniguchi R, Yada S, Aramaki E, Hori S. Adverse Event Signal Detection Using Patients' Concerns in Pharmaceutical Care Records: Evaluation of Deep Learning Models. J Med Internet Res 2024; 26:e55794. [PMID: 38625718 PMCID: PMC11061790 DOI: 10.2196/55794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Early detection of adverse events and their management are crucial to improving anticancer treatment outcomes, and listening to patients' subjective opinions (patients' voices) can make a major contribution to improving safety management. Recent progress in deep learning technologies has enabled various new approaches for the evaluation of safety-related events based on patient-generated text data, but few studies have focused on the improvement of real-time safety monitoring for individual patients. In addition, no study has yet been performed to validate deep learning models for screening patients' narratives for clinically important adverse event signals that require medical intervention. In our previous work, novel deep learning models have been developed to detect adverse event signals for hand-foot syndrome or adverse events limiting patients' daily lives from the authored narratives of patients with cancer, aiming ultimately to use them as safety monitoring support tools for individual patients. OBJECTIVE This study was designed to evaluate whether our deep learning models can screen clinically important adverse event signals that require intervention by health care professionals. The applicability of our deep learning models to data on patients' concerns at pharmacies was also assessed. METHODS Pharmaceutical care records at community pharmacies were used for the evaluation of our deep learning models. The records followed the SOAP format, consisting of subjective (S), objective (O), assessment (A), and plan (P) columns. Because of the unique combination of patients' concerns in the S column and the professional records of the pharmacists, this was considered a suitable data for the present purpose. Our deep learning models were applied to the S records of patients with cancer, and the extracted adverse event signals were assessed in relation to medical actions and prescribed drugs. RESULTS From 30,784 S records of 2479 patients with at least 1 prescription of anticancer drugs, our deep learning models extracted true adverse event signals with more than 80% accuracy for both hand-foot syndrome (n=152, 91%) and adverse events limiting patients' daily lives (n=157, 80.1%). The deep learning models were also able to screen adverse event signals that require medical intervention by health care providers. The extracted adverse event signals could reflect the side effects of anticancer drugs used by the patients based on analysis of prescribed anticancer drugs. "Pain or numbness" (n=57, 36.3%), "fever" (n=46, 29.3%), and "nausea" (n=40, 25.5%) were common symptoms out of the true adverse event signals identified by the model for adverse events limiting patients' daily lives. CONCLUSIONS Our deep learning models were able to screen clinically important adverse event signals that require intervention for symptoms. It was also confirmed that these deep learning models could be applied to patients' subjective information recorded in pharmaceutical care records accumulated during pharmacists' daily work.
Collapse
Affiliation(s)
- Satoshi Nishioka
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Satoshi Watabe
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yuki Yanagisawa
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Kyoko Sayama
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Hayato Kizaki
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Shungo Imai
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | | | | | - Shuntaro Yada
- Nara Institute of Science and Technology, Nara, Japan
| | - Eiji Aramaki
- Nara Institute of Science and Technology, Nara, Japan
| | - Satoko Hori
- Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan
| |
Collapse
|
3
|
Cai H, Du X, Deng Y, Cao D, Wang L, Wu Z, Zhang X, Xu J, Xie B. Pharmacokinetics and apparent Michaelis constant for metabolite conversion of sorafenib in healthy and hepatocellular carcinoma-bearing rats. Bioanalysis 2024; 16:461-473. [PMID: 38530220 PMCID: PMC11216244 DOI: 10.4155/bio-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Aim: Investigation of the pharmacokinetics of sorafenib (SRF) in rats with hepatocellular carcinoma (HCC). Methods: A reproducible ultra-HPLC-MS method for simultaneous determination of serum SRF, N-hydroxymethyl sorafenib and N-demethylation sorafenib. Results: Both the maximum serum concentrations (2.5-times) and the area under the serum concentration-time curve from 0 h to infinity (4.5-times) of SRF were observed to be significantly higher, with a greater than 3.0-fold decrease in the clearance rate in the HCC-bearing rats compared with these values in healthy animals. Further study revealed approximately 3.8- and 3.2-times increases in the apparent Michaelis constant for N-hydroxymethyl sorafenib and N-demethylation sorafenib conversions in the HCC-bearing rats. Conclusion: The low efficiency for the SRF conversions was a key contributor to the increased serum concentrations of SRF.
Collapse
Affiliation(s)
- Hongxin Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Xiaoyue Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Yufeng Deng
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330001, China
| | - Dejian Cao
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Lele Wang
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Zhiguo Wu
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330001, China
| | - Xianchao Zhang
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Jinbiao Xu
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| | - Baogang Xie
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Medical College of Jiaxing University, Key Laboratory of Medical Electronics & Digital Health of Zhejiang Province, Jiaxing University, Jiaxing, 314001, China
| |
Collapse
|
4
|
Yang D, Du J, Nie W, Wang C, Ma Z. Combination treatment of transcatheter arterial chemoembolization, intensity-modulated radiotherapy, and sorafenib for hepatocellular carcinoma with macrovascular invasion. Medicine (Baltimore) 2023; 102:e35713. [PMID: 37960807 PMCID: PMC10637514 DOI: 10.1097/md.0000000000035713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
This study evaluated the therapeutic effects and toxic reactions of combining transcatheter arterial chemoembolization (TACE) and intensity-modulated radiotherapy (IMRT) with sorafenib for the treatment of advanced hepatocellular carcinoma (HCC) patients with macrovascular invasion (MVI). We retrospectively analyzed the clinical data of 82 HCC patients with MVI, among whom 35 were treated with TACE plus IMRT alone, and 47 were treated with the combined therapy of TACE, IMRT, and sorafenib. The progression-free survival (PFS), overall survival (OS), and adverse events were assessed. The baseline characteristics were comparable between the 2 groups (all P > .05). In the TACE plus IMRT plus sorafenib group, the median PFS was 17.2 months (95% confidence interval, 14.1-19.9), significantly longer than the 9.4 months (95% confidence interval, 6.8-11.2) observed in the TACE plus IMRT group (P < .001). Additionally, patients treated with the TACE plus IMRT plus sorafenib showed a longer median OS than those treated with TACE plus IMRT alone (24.1 vs 17.3 months; P < .001). The occurrence rates of grade 1 to 2 hand-foot syndrome, other skin reactions, diarrhea, and hair loss were higher in the TACE plus IMRT plus sorafenib group (all P < .05). There were no grade 4 or higher adverse events in either group. The combination of TACE plus IMRT with sorafenib provided substantial clinical benefits in the treatment of HCC patients with MVI, increasing the tumor response rate and prolonging both PFS and OS. This approach demonstrated a tolerable and manageable safety profile.
Collapse
Affiliation(s)
- Dan Yang
- Department of Gastroenterology, 3201 Hospital, Hanzhong, China
| | - Jiaojiao Du
- Department of Gastroenterology, 3201 Hospital, Hanzhong, China
| | - Weijie Nie
- Department of Gastroenterology, 3201 Hospital, Hanzhong, China
| | - Chaozhi Wang
- Department of Gastroenterology, 3201 Hospital, Hanzhong, China
| | - Zhufang Ma
- Department of Gastroenterology, 3201 Hospital, Hanzhong, China
| |
Collapse
|
5
|
Haynes D, Morgan EE, Chu EY. Cutaneous adverse reactions resulting from targeted cancer therapies: histopathologic and clinical findings. Hum Pathol 2023; 140:129-143. [PMID: 37146945 DOI: 10.1016/j.humpath.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Targeted cancer treatments-designed to interfere with specific molecular signals responsible for tumor survival and progression-have shown benefit over conventional chemotherapies but may lead to diverse cutaneous adverse effects. This review highlights clinically significant dermatologic toxicities and their associated histopathologic findings, resulting from various targeted cancer drugs. Case reports and series, clinical trials, reviews, and meta-analyses are included for analysis and summarized herein. Cutaneous side effects resulting from targeted cancer therapies were reported with incidences as high as 90% for certain medications, and reactions are often predictable based on mechanism(s) of action of a given drug. Common and important reaction patterns included: acneiform eruptions, neutrophilic dermatoses, hand-foot skin reaction, secondary cutaneous malignancies, and alopecia. Clinical and histopathologic recognition of these toxicities remains impactful for patient care.
Collapse
Affiliation(s)
- Dylan Haynes
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric E Morgan
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Emily Y Chu
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Fang Y, Zhang X, Huang H, Zeng Z. The interplay between noncoding RNAs and drug resistance in hepatocellular carcinoma: the big impact of little things. J Transl Med 2023; 21:369. [PMID: 37286982 DOI: 10.1186/s12967-023-04238-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death in people, and a common primary liver cancer. Lacking early diagnosis and a high recurrence rate after surgical resection, systemic treatment is still an important treatment method for advanced HCC. Different drugs have distinct curative effects, side effects and drug resistance due to different properties. At present, conventional molecular drugs for HCC have displayed some limitations, such as adverse drug reactions, insensitivity to some medicines, and drug resistance. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have been well documented to be involved in the occurrence and progression of cancer. Novel biomarkers and therapeutic targets, as well as research into the molecular basis of drug resistance, are urgently needed for the management of HCC. We review current research on ncRNAs and consolidate the known roles regulating drug resistance in HCC and examine the potential clinical applications of ncRNAs in overcoming drug resistance barriers in HCC based on targeted therapy, cell cycle non-specific chemotherapy and cell cycle specific chemotherapy.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - XiaoLi Zhang
- Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - HanFei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
7
|
Shou L, Chen J, Shao T, Zhang Y, Zhao S, Chen S, Shu Q. Clinical characteristics, treatment outcomes, and prognosis in patients with MKIs-associated hand-foot skin reaction: a retrospective study. Support Care Cancer 2023; 31:375. [PMID: 37273007 DOI: 10.1007/s00520-023-07830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Multikinase inhibitors (MKIs) treatment has been proven as a powerful strategy in cancer therapy. However, it is greatly hampered by its common adverse effect known as hand-foot skin reaction (HFSR), especially in patients with moderate-to-severe HFSR. OBJECTIVE To investigate the clinical characteristics, histopathological features, treatment response, and bio-indicators of HFSR. METHODS We retrospectively reviewed the medical records of 102 patients with moderate-to-severe HFSR resulting from MKIs therapy. RESULTS The median time to development of moderate-to-severe HFSR was 18 days, which would be significantly affected by the type of MKIs and the history of HFSR. Notably, we found that HFSR was classified into three consecutive stages: erythematous lesion, yellow hyperkeratotic lesion with surrounding erythema, and hyperkeratotic lesion. Inflammation was observed in the first two stages of HFSR, but disappeared in the third stage; in contrast, the hyperkeratosis gradually became thicker from stage one to stage three. Moreover, topical medications were demonstrated as an effective therapy for HFSR, among which, the topical steroids and urea ointment treatment response rate was 37.14%, the Shouzu Ning Decoction (SND) treatment response rate was 65%, and the SND in combination with urea ointment treatment response rate was 75%, meanwhile, systemic therapies did not improve the therapeutic efficacy of topical medications alone. In addition, the serum levels of HMGB1 were found to be a potential indicator for tracking the healing process as well as predicting the prognosis of HFSR. CONCLUSION This study revealed the potential factors affecting the development of HFSR, evaluated the therapeutic response towards different strategies for treating HFSR, and identified a potential prognostic indicator of HFSR.
Collapse
Affiliation(s)
- Liumei Shou
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jialu Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Tianyu Shao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yao Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shuya Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shuyi Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
| |
Collapse
|
8
|
Pandy JGP, Franco PIG, Li RK. Prophylactic strategies for hand-foot syndrome/skin reaction associated with systemic cancer treatment: a meta-analysis of randomized controlled trials. Support Care Cancer 2022; 30:8655-8666. [PMID: 35655045 DOI: 10.1007/s00520-022-07175-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Hand-foot syndrome (HFS) and hand-foot skin reaction (HFSR) are common toxicities of several systemic cancer treatments. Multikinase inhibitor-induced HFSR is distinguished from chemotherapy-induced HFS in terms of pathogenesis, symptomatology, and treatment. Multiple trials have investigated the efficacy of preventive strategies such as COX-inhibitors, pyridoxine, and urea cream; however, no consensus has been made. This meta-analysis evaluated data from high-quality trials to provide strong evidence in forming recommendations to prevent systemic cancer therapy-induced HFS/HFSR. METHODS A systematic search of PubMed, Embase, Cochrane, clinical trials databases, and hand searching were utilized to identify randomized trials (RCTs) investigating prophylactic strategies for HFS/HFSR in cancer patients receiving systemic treatment. Trials published until August 2021 were included. Using the random effects model, pooled odds ratios were calculated for rates of all-grade and severe HFS/HFSR. Subgroup analysis based on type of cancer treatment given was done. RESULTS Sixteen RCTs were included (N=2814). For all-grade HFS/HFSR, celecoxib (OR 0.52, 95% CI 0.32-0.85, p=0.009) and urea cream (OR 0.48, 95% CI 0.39-0.60, p<0.00001) both showed statistically significant risk reduction. Celecoxib was effective in preventing HFS in patients who received capecitabine (50.5% vs 65%, p=0.05), while urea cream was effective in both capecitabine HFS (22.3% vs 39.5%, p=0.02) and sorafenib-induced HFSR (54.9% vs 71.4%, p<0.00001). Pyridoxine at higher doses showed a trend towards benefit in preventing all grade HFS (69.6% vs 74.1%, p=0.23). CONCLUSIONS Urea cream and celecoxib are both effective in preventing HFS/HFSR in patients receiving systemic cancer treatment. Particularly, celecoxib is more effective in preventing all-grade capecitabine-induced HFS, while urea cream shows more benefit in preventing moderate to severe sorafenib-induced HFSR. Studies investigating optimal dosing for celecoxib and urea cream are recommended. There is inadequate evidence to make recommendations regarding pyridoxine.
Collapse
Affiliation(s)
- Jessa Gilda P Pandy
- Cancer Institute, Section of Medical Oncology, St. Luke's Medical Center, Quezon City, Philippines.
| | - Paula Isabel G Franco
- Cancer Institute, Section of Medical Oncology, St. Luke's Medical Center, Quezon City, Philippines
| | - Rubi K Li
- Cancer Institute, Section of Medical Oncology, St. Luke's Medical Center, Quezon City, Philippines
| |
Collapse
|
9
|
Nishioka S, Watanabe T, Asano M, Yamamoto T, Kawakami K, Yada S, Aramaki E, Yajima H, Kizaki H, Hori S. Identification of hand-foot syndrome from cancer patients' blog posts: BERT-based deep-learning approach to detect potential adverse drug reaction symptoms. PLoS One 2022; 17:e0267901. [PMID: 35507636 PMCID: PMC9067685 DOI: 10.1371/journal.pone.0267901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/18/2022] [Indexed: 12/29/2022] Open
Abstract
Early detection and management of adverse drug reactions (ADRs) is crucial for improving patients' quality of life. Hand-foot syndrome (HFS) is one of the most problematic ADRs for cancer patients. Recently, an increasing number of patients post their daily experiences to internet community, for example in blogs, where potential ADR signals not captured through routine clinic visits can be described. Therefore, this study aimed to identify patients with potential ADRs, focusing on HFS, from internet blogs by using natural language processing (NLP) deep-learning methods. From 10,646 blog posts, written in Japanese by cancer patients, 149 HFS-positive sentences were extracted after pre-processing, annotation and scrutiny by a certified oncology pharmacist. The HFS-positive sentences described not only HFS typical expressions like "pain" or "spoon nail", but also patient-derived unique expressions like onomatopoeic ones. The dataset was divided at a 4 to 1 ratio and used to train and evaluate three NLP deep-learning models: long short-term memory (LSTM), bidirectional LSTM and bidirectional encoder representations from transformers (BERT). The BERT model gave the best performance with precision 0.63, recall 0.82 and f1 score 0.71 in the HFS user identification task. Our results demonstrate that this NLP deep-learning model can successfully identify patients with potential HFS from blog posts, where patients' real wordings on symptoms or impacts on their daily lives are described. Thus, it should be feasible to utilize patient-generated text data to improve ADR management for individual patients.
Collapse
Affiliation(s)
- Satoshi Nishioka
- Keio University Faculty of Pharmacy, Division of Drug Informatics, Tokyo, Japan
| | - Tomomi Watanabe
- Keio University Faculty of Pharmacy, Division of Drug Informatics, Tokyo, Japan
| | - Masaki Asano
- Keio University Faculty of Pharmacy, Division of Drug Informatics, Tokyo, Japan
| | - Tatsunori Yamamoto
- Keio University Faculty of Pharmacy, Division of Drug Informatics, Tokyo, Japan
| | - Kazuyoshi Kawakami
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shuntaro Yada
- Nara Institute of Science and Technology, Nara, Japan
| | - Eiji Aramaki
- Nara Institute of Science and Technology, Nara, Japan
| | | | - Hayato Kizaki
- Keio University Faculty of Pharmacy, Division of Drug Informatics, Tokyo, Japan
| | - Satoko Hori
- Keio University Faculty of Pharmacy, Division of Drug Informatics, Tokyo, Japan
| |
Collapse
|
10
|
Nie W, Lu Y, Pan C, Gao J, Luo M, Du J, Wang J, Luo P, Zhu H, Che J, He Q, Dong X. Design, Synthesis, and Biological Evaluation of Quinazoline Derivatives with Covalent Reversible Warheads as Potential FGFR4 Inhibitors. Bioorg Chem 2022; 121:105673. [DOI: 10.1016/j.bioorg.2022.105673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 01/22/2023]
|
11
|
Li T, Shi Q, Liu J, Wang Y, Zhou C, Wang C, Ju S, Huang S, Yang C, Chen Y, Bai Y, Xiong B. Donafenib-Loaded Callispheres Beads Embolization in a VX2 Liver Tumor: Investigating Efficacy, Safety, and Improvement of Tumor Angiogenesis After Embolization. J Hepatocell Carcinoma 2021; 8:1525-1535. [PMID: 34888263 PMCID: PMC8651093 DOI: 10.2147/jhc.s337097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the efficiency and safety of callispheres beads loaded with donafenib (DCBs) for embolization in a VX2 liver tumor, as well as the improvement of tumor angiogenesis following embolization. Methods Forty New Zealand white rabbit VX2 liver tumors were treated with four different drugs via the hepatic artery: NS (normal saline), CB (blank callispheres beads), ACB (adriamycin-loaded callispheres beads) and DCB (DCBs). Hematoxylin-eosin staining was performed to assess tumor necrosis, while MRI was employed to detect the changes in tumor size. The safety was evaluated by the liver and kidney function parameters, and the immunofluorescence and immunohistochemical staining were performed to reflect the tumor hypoxia and tumor angiogenesis following embolization. Results The DCB group had the smallest tumor growth rate, but the tumor necrosis rate was the highest of the four groups. Compared to the CB and ACB groups, the DCB group did not aggravate the liver damage and had no influence on kidney function. The staining results showed that, although the tumor hypoxia deteriorated after DCBs embolization, the expression of VEGF (vascular endothelial growth factor) reduced, thus inhibiting tumor angiogenesis. Conclusion DCB administration via hepatic artery is an effective and safe treatment for a preclinical liver cancer model, with the unique benefit of suppressing tumor angiogenesis following embolization.
Collapse
Affiliation(s)
- Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Qin Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Songjiang Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Chongtu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Yang Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, People's Republic of China
| |
Collapse
|
12
|
Du J, Yan H, Xu Z, Yang B, He Q, Wang X, Luo P. Cutaneous toxicity of FDA-approved small-molecule kinase inhibitors. Expert Opin Drug Metab Toxicol 2021; 17:1311-1325. [PMID: 34743659 DOI: 10.1080/17425255.2021.2004116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION By 1 January 2021, the FDA has approved a total of 62 small-molecule kinase inhibitors (SMKIs). The increasing clinical use of small-molecule kinase inhibitors has led to some side effects, the most common of which is cutaneous toxicity, as reflected by approximately 90% (57 of 62) of the FDA-approved SMKIs have reported treatment-related cutaneous toxicities. Since these cutaneous toxicities may have a crucial influence on the emotional, physical and psychosocial health of the patients, it is of great importance for doctors, patients, oncologists and interrelated researchers to be aware of the cutaneous side effects of these drugs in order to make the diagnosis accurate and the treatment appropriate. AREAS COVERED This review aims to summarize the potential cutaneous toxicities and the frequency of occurrence of FDA-approved 62 SMKIs, and provide a succinct overview of the potential mechanisms of certain cutaneous toxicities. The literature review was performed based on PubMed database and FDA official website. EXPERT OPINION It is significant to determine the risk factors for SMKI-induced cutaneous toxicity. The mechanisms underlying SMKI-induced cutaneous toxicities remain unclear at present. Future research should focus on the mechanisms of SMKI-induced cutaneous toxicities to find out mechanistically driven therapies.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohong Wang
- Department of Chemotherapy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Machado CB, de Pinho Pessoa FMC, da Silva EL, da Costa Pantoja L, Ribeiro RM, de Moraes Filho MO, de Moraes MEA, Montenegro RC, Burbano RMR, Khayat AS, Moreira-Nunes CA. Kinase Inhibition in Relapsed/Refractory Leukemia and Lymphoma Settings: Recent Prospects into Clinical Investigations. Pharmaceutics 2021; 13:1604. [PMID: 34683897 PMCID: PMC8540545 DOI: 10.3390/pharmaceutics13101604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer is still a major barrier to life expectancy increase worldwide, and hematologic neoplasms represent a relevant percentage of cancer incidence rates. Tumor dependence of continuous proliferative signals mediated through protein kinases overexpression instigated increased strategies of kinase inhibition in the oncologic practice over the last couple decades, and in this review, we focused our discussion on relevant clinical trials of the past five years that investigated kinase inhibitor (KI) usage in patients afflicted with relapsed/refractory (R/R) hematologic malignancies as well as in the pharmacological characteristics of available KIs and the dissertation about traditional chemotherapy treatment approaches and its hindrances. A trend towards investigations on KI usage for the treatment of chronic lymphoid leukemia and acute myeloid leukemia in R/R settings was observed, and it likely reflects the existence of already established treatment protocols for chronic myeloid leukemia and acute lymphoid leukemia patient cohorts. Overall, regimens of KI treatment are clinically manageable, and results are especially effective when allied with tumor genetic profiles, giving rise to encouraging future prospects of an era where chemotherapy-free treatment regimens are a reality for many oncologic patients.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Flávia Melo Cunha de Pinho Pessoa
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Laudreísa da Costa Pantoja
- Department of Pediatrics, Octávio Lobo Children’s Hospital, Belém 60430-275, Brazil;
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | | | - Manoel Odorico de Moraes Filho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
| | - Rommel Mário Rodriguez Burbano
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | - André Salim Khayat
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Medicine, Federal University of Ceará, Fortaleza 60430-275, Brazil; (C.B.M.); (F.M.C.d.P.P.); (E.L.d.S.); (M.O.d.M.F.); (M.E.A.d.M.); (R.C.M.)
- Oncology Research Center, Department of Biological Sciences, Federal University of Pará, Belém 66073-005, Brazil; (R.M.R.B.); (A.S.K.)
| |
Collapse
|
14
|
Effect of Urea Cream on Hand-Foot Syndrome in Patients Receiving Chemotherapy: A Meta-analysis. Cancer Nurs 2021; 45:378-386. [PMID: 34483284 DOI: 10.1097/ncc.0000000000001008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hand-foot syndrome (HFS) is a specific adverse effect of certain chemotherapy that may lead to dosage reduction or chemotherapy discontinuation in patients with cancer. Topical urea cream may reduce symptom severity in patients with HFS. However, these studies have not provided consonant results. OBJECTIVE To determine the effectiveness of urea cream, we conducted a meta-analysis of clinical trials to evaluate the prevention and treatment of HFS. METHODS PubMed, EMBASE, and Cochrane Library databases were searched for studies published before September 2020. The study registered at PROSPERO (CRD 42020203164). Incidence of HFS reported in studies at any grade and at second grade or greater was assessed within 3 to 12 weeks. Secondary outcomes were time to HFS, incidence of skin-related adverse events, chemotherapy dose reduction, and quality of life. RESULTS Seven trials involving 1387 patients were reviewed. In the prophylactic subgroup, patients with urea cream intervention showed a significantly lower incidence of HFS at second grade or greater (risk ratio, 0.72; 95% confidence interval, 0.58-0.90) and a nonsignificant lower incidence of any-grade HFS (risk ratio, 0.79; 95% confidence interval, 0.58-1.08) than those not receiving urea cream intervention. CONCLUSIONS Urea cream has advantages to reduce the incidence of severe HFS. IMPLICATIONS FOR PRACTICE Urea cream is a safe and viable topical prevention strategy that can reduce the incidence of high-grade HFS in patients undergoing chemotherapy. We recommend a routine treatment option before chemotherapy for the patients.
Collapse
|
15
|
Che J, Dai X, Gao J, Sheng H, Zhan W, Lu Y, Li D, Gao Z, Jin Z, Chen B, Luo P, Yang B, Hu Y, He Q, Weng Q, Dong X. Discovery of N-((3 S,4 S)-4-(3,4-Difluorophenyl)piperidin-3-yl)-2-fluoro-4-(1-methyl-1 H-pyrazol-5-yl)benzamide (Hu7691), a Potent and Selective Akt Inhibitor That Enables Decrease of Cutaneous Toxicity. J Med Chem 2021; 64:12163-12180. [PMID: 34375113 DOI: 10.1021/acs.jmedchem.1c00815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rash is one of the primary dose-limiting toxicities of Akt (protein kinase B) inhibitors in clinical trials. Here, we demonstrate the inhibition of Akt2 isozyme may be a driver for keratinocyte apoptosis, which promotes us to search for new selective Akt inhibitors with an improved cutaneous safety property. According to our previous research, compound 2 is selected for further optimization for overcoming the disadvantages of compound 1, including high Akt2 inhibition and high toxicity against HaCaT keratinocytes. The dihedral angle-based design and molecular dynamics simulation lead to the identification of Hu7691 (B5) that achieves a 24-fold selectivity between Akt1 and Akt2. Hu7691 exhibits low activity in inducing HaCaT apoptosis, promising kinase selectivity, and excellent anticancer cell proliferation potencies. Based on the superior results of safety property, pharmacokinetic profile, and in vivo efficacy, the National Medical Products Administration (NMPA) approved the investigational new drug (IND) application of Hu7691.
Collapse
Affiliation(s)
- Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haichao Sheng
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenhu Zhan
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dan Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zizheng Gao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zegao Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Binhui Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongzhou Hu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiaojun He
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
16
|
Rodriguez-Gil JL, Bianconi SE, Farhat N, Kleiner DE, Nelson M, Porter FD. Hepatocellular carcinoma as a complication of Niemann-Pick disease type C1. Am J Med Genet A 2021; 185:3111-3117. [PMID: 34138521 DOI: 10.1002/ajmg.a.62382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/11/2022]
Abstract
Niemann-Pick disease type C (NPC) is a rare and fatal lysosomal storage disorder characterized by neurodegeneration and hepatic involvement. Mutations in either NPC1 or NPC2, two genes encoding lysosomal proteins, lead to an intracellular accumulation of unesterified cholesterol and sphingolipids in late endosomes/lysosomes. Early cholestatic disease is considered a hallmark of patients with early disease onset. This can potentially result in liver failure shortly after birth or subclinical hepatic inflammation. Previous reports suggest an association between NPC and hepatocellular carcinoma, a cancer that is rare during childhood. We present a 12-year-old male with a known diagnosis of NPC1 disease who was found to have a stage III hepatocellular carcinoma, underwent surgical resection with adjuvant chemotherapy, and subsequently died from metastatic disease. This report provides evidence of an increased risk of hepatocellular carcinoma in NPC patients, suggesting a need for screening in this patient population.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Simona E Bianconi
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicole Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Nelson
- Center for Cancer and Blood Disorders, Children's National Hospital and the George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Xia H, Zhou C, Luo Z, Zhang P, Zhu L, Gong Z. Apatinib-Induced Hand-Foot Skin Reaction in Chinese Patients With Liver Cancer. Front Oncol 2021; 11:624369. [PMID: 33981598 PMCID: PMC8107464 DOI: 10.3389/fonc.2021.624369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
Apatinib, an anti-tumor drug selectively targeting VEGFR2 (Vascular Endothelia Growth Factor Recpetor-2), has been proven effective in Chinese patients with liver cancer. Generally, treatment with apatinib achieves 16.1% of the overall objective remission rate (ORR) and 55.83% of the disease control rate (DCR) in Chinese patients with liver cancer. However, the prevalence of apatinib-induced hand–foot skin reaction (AI-HFSR) is noticeably high. The incidence of AI-HFSR is about 50.5%, of which Grades 1/2 and 3 are 38.8 and 11.6%, respectively. In addition, potential molecular mechanisms underlying the development of AI-HFSR are poorly understood and urgently needed to be investigated histologically. In this review, we summarize and review the current efficacy of apatinib and the prevalence of AI-HFSR in Chinese patients with liver cancer. Besides, we postulate the potential mechanisms underlying the development of AI-HFSR and discuss the optimal clinical management for this unwanted cutaneous side effect.
Collapse
Affiliation(s)
- Hui Xia
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Cheng Zhou
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhaoxia Luo
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Ping Zhang
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan, China
| | - Liping Zhu
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhao Gong
- Department of Hepatobiliary Surgery, Wuhan No. 1 Hospital, Wuhan, China
| |
Collapse
|
18
|
Chen J, Wang Z. How to conduct integrated pharmaceutical care for patients with hand-foot syndrome associated with chemotherapeutic agents and targeted drugs. J Oncol Pharm Pract 2021; 27:919-929. [PMID: 33874817 DOI: 10.1177/10781552211009291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The objective of this article was to offer practical operational process for pharmacists to successfully conduct integrated pharmaceutical care for patients with hand-foot syndrome associated with chemotherapeutic agents and targeted drugs which may facilitate the work of first-line clinical pharmacist.Data sources: A literature review was conducted in March 2020 of Pubmed, Medline, and EMBASE (2010-2020) using terms such as: hand-foot syndrome, hand-foot skin reaction, palmar-plantar erythrodysesthesia, chemotherapeutic agent, and multikinase inhibitor. Appropriate references from selected articles were also used.Data summary: This paper involves 81 articles including review articles, meta-analysis, and clinical trials which focused on every aspect of hand-foot syndrome, such as manifestation, mechanism, occurrence rate, onset time, patient education, self-monitor scale, and management. Studies were thematically divided into four parts (clinical presentation of HFS, risk stratification, initiation of pharmaceutic care, and management of the adverse reaction). CONCLUSION HFS is one of the common adverse events which was associated with many chemotherapeutic agents and multikinase inhibitor drugs. Although the mechanisms and histopathology may be different, they due share some common clinical manifestations. As part of integrated pharmaceutical care for cancer patients, it is important to conduct patient education about the risk of hand-foot syndrome and basic knowledge about hand-foot syndrome management before initiating anticancer therapy. Once hand-foot syndrome happens, evidence-based management could try. If the hand-foot syndrome is intolerable, dose reduction or discontinuation of the anticancer therapy should be considered.
Collapse
Affiliation(s)
- Jiexiu Chen
- Department of Pharmacy, Sichuan Provincial Women's and Children's Hospital, Chengdu, China
| | - Zhuo Wang
- Department of Pharmacy, Changhai Hospital of Shanghai, Shanghai, China
| |
Collapse
|
19
|
Identification of Beilschmiedia tsangii Root Extract as a Liver Cancer Cell-Normal Keratinocyte Dual-Selective NRF2 Regulator. Antioxidants (Basel) 2021; 10:antiox10040544. [PMID: 33915987 PMCID: PMC8066689 DOI: 10.3390/antiox10040544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) plays a crucial role in regulating the expression of genes participating in cellular defense mechanisms against oxidative or xenobiotic insults. However, there is increasing evidence showing that hyperactivation of NRF2 is associated with chemoresistance in several cancers, including hepatocellular carcinoma (HCC), thus making NRF2 an attractive target for cancer therapy. Another important issue in cancer medication is the adverse effects of these substances on normal cells. Here, we attempted to identify a dual-selective NRF2 regulator that exerts opposite effects on NRF2-hyperactivated HCC cells and normal keratinocytes. An antioxidant response element driven luciferase reporter assay was established in Huh7 and HaCaT cells as high-throughput screening platforms. Screening of 3,000 crude extracts from the Taiwanese Indigenous Plant Extract Library resulted in the identification of Beilschmiedia tsangii (BT) root extract as a dual-selective NRF2 regulator. Multiple compounds were found to contribute to the dual-selective effects of BT extract on NRF2 signaling in two cell lines. BT extract reduced NRF2 protein level and target gene expression levels in Huh7 cells but increased them in HaCaT cells. Furthermore, notable combinatory cytotoxic effects of BT extract and sorafenib on Huh7 cells were observed. On the contrary, sorafenib-induced inflammatory reactions in HaCaT cells were reduced by BT extract. In conclusion, our results suggest that the combination of a selective NRF2 activator and inhibitor could be a practical strategy for fine-tuning NRF2 activity for better cancer treatment and that plant extracts or partially purified fractions could be a promising source for the discovery of dual-selective NRF2 regulators.
Collapse
|
20
|
RBM23 Drives Hepatocellular Carcinoma by Activating NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6697476. [PMID: 33791378 PMCID: PMC7994101 DOI: 10.1155/2021/6697476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Purpose Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and angiogenesis has been proven to be significantly involved in its progression. However, the molecular mechanism underlying HCC angiogenesis has not been well researched. In this study, RNA Binding Motif Protein 23 (RBM23) was identified as a novel proangiogenic factor in HCC cell lines and tissues. Materials and Methods Firstly, we analyzed the correlation of clinical specimens. In HCC tissues, the levels of RBM23 and microvessel density (MVD) showed a strong positive correlation. Furthermore, data from related cytology experiments showed that the knockdown of RBM23 expression in HCC cells significantly inhibited the tube formation by the human vascular endothelial cells in vitro. The mechanism of this phenomenon was found to be through increasing the mRNA of p65 and enhanced the nuclear accumulation of p65. Consequently, RBM23 activated the NF-κB signaling pathway and promoted expression of the proangiogenic cytokines selectively. Results and Conclusion. In summary, this study revealed that RBM23 promotes the angiogenesis properties of HCC via the NF-κB signaling pathway. It may, therefore, be a potential therapeutic target for the treatment of hepatocellular carcinoma.
Collapse
|
21
|
Shou L, Shao T, Zhao F, Chen S, Chen Q, Shu Q. The Efficacy and Safety of the Shouzu Ning Decoction Treatment for Multi-Kinase Inhibitors-Associated Severe Hand-Foot Skin Reaction. Cancer Manag Res 2021; 13:45-53. [PMID: 33442293 PMCID: PMC7800444 DOI: 10.2147/cmar.s285002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
Background Multi-kinase inhibitors (MKIs) treatment plays an important role in cancer therapy, but still suffers from a high incidence of hand–foot skin reaction (HFSR), leading to MKIs dose modification or termination. Thus, there is a high need for therapeutic strategy for HFSR. Patients and Methods This prospective analysis included twenty patients, who were continuously administered with MKIs treatment and presented with a grade 3 HFSR during January 2018 to December 2019. All the patients were treated with the Shouzu Ning Decoction (SND) twice a day, in addition to the MKIs treatment. Grading of HFSR was assessed by National Cancer Institute Common Terminology Criteria for Adverse Events version 5.0. Pain intensity was evaluated using the numerical rating scale (NRS). Quality of life was assessed using the Hand–Foot Quality of Life Scale (HF-QoLS). Results The median time from MKIs initiation to onset of grade 3 HFSR was 26.2 days. Following the SND treatment, seventeen (17/20) patients displayed grade 2 HFSR with a median time of 5.1 days. Among whom, seven (7/17) finally transformed to grade 1 with a median time of 9.9 days. While all of the grade 1 patients (7/7) had local recurrence, and retreatment of the SND was effective. In addition, after the SND treatment, the score of NRS and HF-QoLS decreased to 1.60 ± 1.14 (P < 0.01) and 26.75 ± 11.76 (P < 0.01), respectively. Conclusion The SND treatment could alleviate symptoms, relieve pain and improve quality of life in HFSR patients. The SND treatment was proved to be an effective and well-tolerated treatment for MKIs-associated grade 3 HFSR patients for the first time. Indeed, further randomized controlled trails with large-scale, multi-center are require to fully determine the clinical application of the SND in MKIs-associated HFSR.
Collapse
Affiliation(s)
- Liumei Shou
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Tianyu Shao
- The First Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fangmin Zhao
- The First Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shuyi Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qunwei Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Carlberg VM, Davies OMT, Brandling-Bennett HA, Leary SES, Huang JT, Coughlin CC, Gupta D. Cutaneous reactions to pediatric cancer treatment part II: Targeted therapy. Pediatr Dermatol 2021; 38:18-30. [PMID: 33378085 DOI: 10.1111/pde.14495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer remains a leading cause of morbidity and mortality among children. Targeted therapies may improve survivorship; however, unique side-effect profiles have also emerged with these novel therapies. Changes in hair, skin, and nails-termed dermatologic adverse events (AEs)-are among the most common sequelae and may result in interruption or discontinuation of therapy. Though dermatologic AEs have been detailed in adults, these findings are not well described in the pediatric population. We reviewed the literature to characterize dermatologic AEs to anticancer targeted therapies available as of July 2020 and summarized the spectrum of clinical findings as well as treatment recommendations for children. Dermatologic AEs are among the most common AEs reported in pediatric patients receiving targeted therapy, but morphologic and histologic descriptions are often lacking in current publications. Pediatric dermatologists are uniquely poised to recognize specific morphology of dermatologic AEs and make recommendations for prevention and treatment that may improve quality of life and enable ongoing cancer therapy.
Collapse
Affiliation(s)
- Valerie M Carlberg
- Children's Wisconsin, Milwaukee, WI, USA.,Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Sarah E S Leary
- Seattle Children's Hospital, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| | - Jennifer T Huang
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carrie C Coughlin
- St Louis Children's Hospital, St. Louis, MO, USA.,Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Deepti Gupta
- Seattle Children's Hospital, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| |
Collapse
|
23
|
Wang L, Cao H, Jiang C, He W, You Y, Peng K, Jin Y, Xia L. Previous Use of Anti-Vascular Endothelial Growth Factor Receptor Agents Decreases Efficacy of Fruquintinib in Metastatic Colorectal Cancer Refractory to Standard Therapies. Front Oncol 2020; 10:587692. [PMID: 33282739 PMCID: PMC7691567 DOI: 10.3389/fonc.2020.587692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Fruquintinib is an anti-vascular endothelial growth factor receptor (VEGFR) agent. The FRESCO trial demonstrated that patients with metastatic colorectal cancer (mCRC) refractory to standard therapies could benefit from fruquintinib with tolerable adverse events (AEs). However, the efficacy and safety of fruquintinib in clinical practice has scarcely been reported, especially in patients with previous use of anti-VEGFR agents. Methods This retrospective study investigated the efficacy and safety of fruquintinib in patients with mCRC between January 2019 and December 2019. Progression-free survival (PFS) and overall survival (OS) were assessed by a Kaplan-Meier analysis and log-rank test. A Cox regression model was performed to identify independent prognostic factors. Results A total of 46 patients were included. The median PFS and OS were 3.1 months (95% confidence interval [CI], 1.9–4.3 months) and 9.0 months (95% CI, 7.2–10.8 months), respectively. Patients previously treated with anti-VEGFR agents had shorter median PFS compared with those without previous use of anti-VEGFR agents (1.9 vs. 3.7 months, P = 0.006), while the median OS was similar between the two groups (8.5 vs. 9.0 months, P = 0.992). Multivariate analysis revealed that the neutrophil-lymphocyte ratio (NLR) was an independent prognostic factor in PFS (hazard ratio [HR], 2.230; 95% CI, 1.191–4.517, P = 0.014) and OS (HR, 4.221; 95% CI, 1.683–10.586; P = 0.002). The most common non-hematological and hematological AEs were hand-foot syndrome (37.0%) and anemia (39.1%), respectively. Conclusion Fruquintinib was an effective third-line therapy in mCRC with tolerable AEs. Efficacy of fruquintinib was decreased in patients with previous use of anti-VEGFR agents. NLR was an independent prognostic factor in PFS and OS in patients treated with fruquintinib.
Collapse
|