1
|
Sanchini A, Lanni A, Giannoni F, Mustazzolu A. Exploring diagnostic methods for drug-resistant tuberculosis: A comprehensive overview. Tuberculosis (Edinb) 2024; 148:102522. [PMID: 38850839 DOI: 10.1016/j.tube.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Despite available global efforts and funding, Tuberculosis (TB) continues to affect a considerable number of patients worldwide. Policy makers and stakeholders set clear goals to reduce TB incidence and mortality, but the emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) complicate the reach of these goals. Drug-resistance TB needs to be diagnosed rapidly and accurately to effectively treat patients, prevent the transmission of MDR-TB, minimise mortality, reduce treatment costs and avoid unnecessary hospitalisations. In this narrative review, we provide a comprehensive overview of laboratory methods for detecting drug resistance in MTB, focusing on phenotypic, molecular and other drug susceptibility testing (DST) techniques. We found a large variety of methods used, with the BACTEC MGIT 960 being the most common phenotypic DST and the Xpert MTB/RIF being the most common molecular DST. We emphasise the importance of integrating phenotypic and molecular DST to address issues like resistance to new drugs, heteroresistance, mixed infections and low-level resistance mutations. Notably, most of the analysed studies adhered to the outdated definition of XDR-TB and did not consider the pre-XDR definition, thus posing challenges in aligning diagnostic methods with the current landscape of TB resistance.
Collapse
Affiliation(s)
| | - Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | | |
Collapse
|
2
|
Vasiliauskaitė L, Bakuła Z, Vasiliauskienė E, Bakonytė D, Decewicz P, Dziurzyński M, Proboszcz M, Davidavičienė EV, Nakčerienė B, Krenke R, Kačergius T, Stakėnas P, Jagielski T. Detection of multidrug-resistance in Mycobacterium tuberculosis by phenotype- and molecular-based assays. Ann Clin Microbiol Antimicrob 2024; 23:81. [PMID: 39198827 PMCID: PMC11360294 DOI: 10.1186/s12941-024-00741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The whole-genome sequencing (WGS) is becoming an increasingly effective tool for rapid and accurate detection of drug resistance in Mycobacterium tuberculosis complex (MTBC). This approach, however, has still been poorly evaluated on strains from Central and Eastern European countries. The purpose of this study was to assess the performance of WGS against conventional drug susceptibility testing (DST) for the detection of multi-drug resistant (MDR) phenotypes among MTBC clinical strains from Poland and Lithuania. METHODS The study included 208 MTBC strains (130 MDR; 78 drug susceptible), recovered from as many tuberculosis patients in Lithuania and Poland between 2018 and 2021. Resistance to rifampicin (RIF) and isoniazid (INH) was assessed by Critical Concentration (CC) and Minimum Inhibitory Concentration (MIC) DST as well as molecular-based techniques, including line-probe assay (LPA) and WGS. The analysis of WGS results was performed using bioinformatic pipeline- and software-based tools. RESULTS The results obtained with the CC DST were more congruent with those by LPA compared to pipeline-based WGS. Software-based tools showed excellent concordance with pipeline-based analysis in prediction of RIF/INH resistance. The RIF-resistant strains demonstrated a relatively homogenous MIC distribution with the mode at the highest tested MIC value. The most frequent RIF-resistance conferring mutation was rpoB S450L. The mode MIC for INH was two-fold higher among double katG and inhA mutants than among single katG mutants. The overall rate of discordant results between all methods was calculated at 5.3%. Three strains had discordant results by both genotypic methods (LPA and pipeline-based WGS), one strain by LPA only, three strains by MIC DST, two strains by both MIC DST and pipeline-based WGS, and the remaining two strains showed discordant results with all three methods, compared to CC DST. CONCLUSIONS Considering MIC DST results, current CCs of the first-line anti-TB drugs might be inappropriately high and may need to be revised. Both molecular methods demonstrated 100% specificity, while pipeline-based WGS had slightly lower sensitivity for RIF and INH than LPA, compared to CC DST.
Collapse
Affiliation(s)
- Laima Vasiliauskaitė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Centre of Laboratory Medicine, Laboratory of Infectious Diseases and Tuberculosis, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Zofia Bakuła
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edita Vasiliauskienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Centre of Laboratory Medicine, Laboratory of Infectious Diseases and Tuberculosis, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Daiva Bakonytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonology, and Allergology, Warsaw Medical University, Warsaw, Poland
| | - Edita Valerija Davidavičienė
- Department of Programs and State Tuberculosis Information System, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Birutė Nakčerienė
- Department of Programs and State Tuberculosis Information System, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonology, and Allergology, Warsaw Medical University, Warsaw, Poland
| | - Tomas Kačergius
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Petras Stakėnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Puyén ZM, Santos-Lázaro D, Vigo AN, Cotrina VV, Ruiz-Nizama N, Alarcón MJ, Asto B, Huamán T, Moore DAJ. Whole Genome Sequencing of Mycobacterium tuberculosis under routine conditions in a high-burden area of multidrug-resistant tuberculosis in Peru. PLoS One 2024; 19:e0304130. [PMID: 38861531 PMCID: PMC11166294 DOI: 10.1371/journal.pone.0304130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024] Open
Abstract
Whole Genome Sequencing (WGS) is a promising tool in the global fight against tuberculosis (TB). The aim of this study was to evaluate the use of WGS in routine conditions for detection of drug resistance markers and transmission clusters in a multidrug-resistant TB hot-spot area in Peru. For this, 140 drug-resistant Mycobacterium tuberculosis strains from Lima and Callao were prospectively selected and processed through routine (GenoType MTBDRsl and BACTEC MGIT) and WGS workflows, simultaneously. Resistance was determined in accordance with the World Health Organization mutation catalogue. Agreements between WGS and BACTEC results were calculated for rifampicin, isoniazid, pyrazinamide, moxifloxacin, levofloxacin, amikacin and capreomycin. Transmission clusters were determined using different cut-off values of Single Nucleotide Polymorphism differences. 100% (140/140) of strains had valid WGS results for 13 anti-TB drugs. However, the availability of final, definitive phenotypic BACTEC MGIT results varied by drug with 10-17% of invalid results for the seven compared drugs. The median time to obtain results of WGS for the complete set of drugs was 11.5 days, compared to 28.6-52.6 days for the routine workflow. Overall categorical agreement by WGS and BACTEC MGIT for the compared drugs was 96.5%. Kappa index was good (0.65≤k≤1.00), except for moxifloxacin, but the sensitivity and specificity values were high for all cases. 97.9% (137/140) of strains were characterized with only one sublineage (134 belonging to "lineage 4" and 3 to "lineage 2"), and 2.1% (3/140) were mixed strains presenting two different sublineages. Clustering rates of 3.6% (5/140), 17.9% (25/140) and 22.1% (31/140) were obtained for 5, 10 and 12 SNP cut-off values, respectively. In conclusion, routine WGS has a high diagnostic accuracy to detect resistance against key current anti-TB drugs, allowing results to be obtained through a single analysis and helping to cut quickly the chain of transmission of drug-resistant TB in Peru.
Collapse
Affiliation(s)
- Zully M. Puyén
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
- Escuela de Medicina, Universidad Privada de Ciencias Aplicadas, Lima, Perú
| | - David Santos-Lázaro
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Aiko N. Vigo
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Vidia V. Cotrina
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Nathaly Ruiz-Nizama
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Miriam J. Alarcón
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Belisa Asto
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - Teresa Huamán
- Laboratorio de Referencia Nacional de Micobacterias, Instituto Nacional de Salud, Lima, Perú
| | - David A. J. Moore
- Universidad Peruana Cayetano Heredia, Lima, Perú
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Morey-León G, Mejía-Ponce PM, Granda Pardo JC, Muñoz-Mawyin K, Fernández-Cadena JC, García-Moreira E, Andrade-Molina D, Licona-Cassani C, Berná L. A precision overview of genomic resistance screening in Ecuadorian isolates of Mycobacterium tuberculosis using web-based bioinformatics tools. PLoS One 2023; 18:e0294670. [PMID: 38051742 DOI: 10.1371/journal.pone.0294670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
INTRODUCTION Tuberculosis (TB) is among the deadliest diseases worldwide, and its impact is mainly due to the continuous emergence of resistant isolates during treatment due to the laborious process of resistance diagnosis, nonadherence to treatment and circulation of previously resistant isolates of Mycobacterium tuberculosis. In this study, we evaluated the performance and functionalities of web-based tools, including Mykrobe, TB-profiler, PhyResSE, KvarQ, and SAM-TB, for detecting resistance in 88 Ecuadorian isolates of Mycobacterium tuberculosis drug susceptibility tested previously. Statistical analysis was used to determine the correlation between genomic and phenotypic analysis. Our results showed that with the exception of KvarQ, all tools had the highest correlation with the conventional drug susceptibility test (DST) for global resistance detection (98% agreement and 0.941 Cohen's kappa), while SAM-TB, PhyResSE, TB-profiler and Mykrobe had better correlations with DST for first-line drug analysis individually. We also identified that in our study, only 50% of mutations characterized by the web-based tools in the rpoB, katG, embB, pncA, gyrA and rrs regions were canonical and included in the World Health Organization (WHO) catalogue. Our findings suggest that SAM-TB, PhyResSE, TB-profiler and Mykrobe were efficient in determining canonical resistance-related mutations, but more analysis is needed to improve second-line detection. Improving surveillance programs using whole-genome sequencing tools for first-line drugs, MDR-TB and XDR-TB is essential to understand the molecular epidemiology of TB in Ecuador. IMPORTANCE Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis, most commonly affects the lungs and is often spread through the air when infected people cough, sneeze, or spit. However, despite the existence of effective drug treatment, patient adherence, long duration of treatment, and late diagnosis have reduced the effectiveness of therapy and increased drug resistance. The increase in resistant cases, added to the impact of the COVID-19 pandemic, has highlighted the importance of implementing efficient and timely diagnostic methodologies worldwide. The significance of our research is in evaluating and identifying a more efficient and user-friendly web-based tool to characterize resistance in Mycobacterium tuberculosis by whole-genome sequencing, which will allow more routine application to improve TB strain surveillance programs locally.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Universidad de la República, Montevideo, Uruguay
- University of Guayaquil, Guayaquil, Ecuador
| | - Paulina M Mejía-Ponce
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | - Juan Carlos Granda Pardo
- Centro de Referencia Nacional de Micobacterias, Instituto Nacional de Investigación en Salud Pública Dr Leopoldo Izquieta Perez, INSPI-LIP, Guayaquil, Ecuador
| | - Karen Muñoz-Mawyin
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | | | - Derly Andrade-Molina
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Wang Z, Tang Z, Heidari H, Molaeipour L, Ghanavati R, Kazemian H, Koohsar F, Kouhsari E. Global status of phenotypic pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates: an updated systematic review and meta-analysis. J Chemother 2023; 35:583-595. [PMID: 37211822 DOI: 10.1080/1120009x.2023.2214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.
Collapse
Affiliation(s)
- Zheming Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Molaeipour
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|