1
|
Sabia E, Zanon T, Braghieri A, Pacelli C, Angerer V, Gauly M. Effect of slaughter age on environmental efficiency on beef cattle in marginal area including soil carbon sequestration: A case of study in Italian Alpine area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170798. [PMID: 38336055 DOI: 10.1016/j.scitotenv.2024.170798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The production of beef carries significant environmental repercussions on a worldwide level. Considering that the production of beef in Alpine mountainous regions, such as South Tyrol (Italy), constitutes a modest yet progressively growing segment within the local agricultural sector focus must be put on minimizing the environmental impact of producing one kilogram of meat, while also accounting for the carbon sequestered by Alpine pastures in such marginal areas. To this end 20 beef farms distributed in the South Tyrolean region (Italy) were divided based on the age at slaughter of the beef cattle: 10 farms with a slaughter age of 12 months (SA12) and 10 farms with a slaughter age of 24 months (SA24). Live cycle assessment (LCA) approach was used, and the impact was estimated using two functional units (FU): 1 kg of live weight (LW) and 1 kg of carcass weight (CW). Global warming potential (GWP100, kg CO2-eq), acidification potential (AP, g SO2-eq), and eutrophication potential (EP, g PO4-eq) were investigated. Furthermore, within the account, the carbon sequestered by pastures and permanent grassland has been included for estimated the overall carbon footprint. In terms of GWP100, the SA12 system proved to be significantly lower for both two functional units under studies, with reductions of 8.5 % and 7.4 % in terms of LW and CW, respectively, compared to the SA24 system, specifically, the SA12 system showed an environmental impact in terms of GWP100 of 19.5 ± 1.1 kg CO2-eq/kg LW, which was significantly lower than the SA24 system that exhibited a value of 22.9 ± 1.1 kg CO2-eq/kg LW (P < 0.05). When accounting for the carbon sequestered within the system, the observed values in terms of GWP100 are significantly lower for SA12 compared to SA24, 17.6 ± 1.5 vs. 20.9 ± 1.5 kg CO2-eq/Kg LW (P < 0.05), and 29.2 ± 2.5 vs. 38.7 ± 2.5 kg CO2-eq/Kg CW (P < 0.01). These differences are due to less purchase of concentrated feed and greater use of natural resources such as pastures and permanent grasslands. The research indicated that the production of beef in the Alpine region of South Tyrol predominantly occurs within extensive parameters, leading to a satisfactory environmental profile, also including the C sequestration.
Collapse
Affiliation(s)
- Emilio Sabia
- School of Agricultural, Forest, Food, and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Thomas Zanon
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 5, Bolzano 39100, Italy.
| | - Ada Braghieri
- School of Agricultural, Forest, Food, and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Corrado Pacelli
- School of Agricultural, Forest, Food, and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Verena Angerer
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 5, Bolzano 39100, Italy
| | - Matthias Gauly
- Free University of Bozen-Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università 5, Bolzano 39100, Italy
| |
Collapse
|
2
|
Kasapidou E, Iliadis IV, Mitlianga P, Papatzimos G, Karatzia MA, Papadopoulos V, Amanatidis M, Tortoka V, Tsiftsi E, Aggou A, Basdagianni Z. Variations in Composition, Antioxidant Profile, and Physical Traits of Goat Milk within the Semi-Intensive Production System in Mountainous Areas during the Post-Weaning to End-of-Lactation Period. Animals (Basel) 2023; 13:3505. [PMID: 38003123 PMCID: PMC10668865 DOI: 10.3390/ani13223505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dairy products from mountain-origin milk are known for their superior composition and quality. This study aimed to examine changes in composition, nutritional quality, and antioxidant properties of milk from semi-intensively managed goats in mountainous regions during the post-weaning to end-of-lactation period. Bulk tank milk samples from 10 farms were collected bi-weekly in the period from March to September. The farms were situated in regions with an average altitude of 772.20 m above sea level. The results revealed significant variations in milk composition, with fluctuations in fat, protein, lactose, and total solids. Milk yield per doe showed seasonal differences, with the highest yield in April and the lowest in September. Fatty acid composition exhibited changes throughout the sampling period, with variations in polyunsaturated fatty acids. Nutritional indices, such as the atherogenicity index and thrombogenicity index, remained within the recommended values. Antioxidant properties, including total phenolic content, DPPH, FRAP, and ABTS, showed significant differences, with higher values toward the end of the study. Milk pH, electrical conductivity, brix value, and refractive index also exhibited variations, while density and freezing point remained relatively stable. The study provided valuable information that can be used to develop breeding and feeding plans to achieve uniform milk quality in mountainous regions.
Collapse
Affiliation(s)
- Eleni Kasapidou
- Department of Agriculture, University of Western Macedonia, 53100 Florina, Greece (V.P.)
| | | | - Paraskevi Mitlianga
- Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece (P.M.)
| | - Georgios Papatzimos
- Department of Agriculture, University of Western Macedonia, 53100 Florina, Greece (V.P.)
| | | | - Vasileios Papadopoulos
- Department of Agriculture, University of Western Macedonia, 53100 Florina, Greece (V.P.)
| | - Michail Amanatidis
- Department of Agriculture, University of Western Macedonia, 53100 Florina, Greece (V.P.)
| | - Vasiliki Tortoka
- Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece (P.M.)
| | - Ekaterini Tsiftsi
- Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece (P.M.)
| | - Antonia Aggou
- School of Agriculture, Department of Animal Production, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (Z.B.)
| | - Zoitsa Basdagianni
- School of Agriculture, Department of Animal Production, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (Z.B.)
| |
Collapse
|
3
|
Balivo A, Sacchi R, Genovese A. The Noble Method in the dairy sector as a sustainable production system to improve the nutritional composition of dairy products: A review. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Andrea Balivo
- Department of Agricultural Sciences University of Naples Federico II 80055 Portici (NA) Italy
| | - Raffaele Sacchi
- Department of Agricultural Sciences University of Naples Federico II 80055 Portici (NA) Italy
| | - Alessandro Genovese
- Department of Agricultural Sciences University of Naples Federico II 80055 Portici (NA) Italy
| |
Collapse
|
4
|
Water footprint of small-scale dairy farms in the central coast of Peru. Trop Anim Health Prod 2022; 55:25. [PMID: 36564603 DOI: 10.1007/s11250-022-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Worldwide, dairy sector consumes 19% of the water in the livestock sector. However, in Latin America, the amount of water used in this sector is unknown, especially in arid zones. On the other hand, water footprint (WF) is a methodology to estimate the use of water to produce a product. The aim of this work was to estimate the WF of dairy production in the arid zone of the Peruvian central coast. Data from five dairy farms were used. The WF was calculated in its three dimensions: green water, blue water and grey water. In addition, the WF was measured for categories: feed, drinking and service. To measure the WF of feed production, the CROPWAT software was used, whilst the NRC (2001) equations were used to estimate the drinking water. The reference unit was cubic metres per kilogram of fat and protein corrected milk (FPCM). In average, 99% of the WF comes from feed production, followed by drinking water (0.4%). From the three dimensions of the WF, green water is responsible of 60% of the WF, followed by the blue water (30%). Imported water represented 63% of the WF. In general, WF of dairy production in these systems was 0.66 m3/kg FPCM. In conclusion, feed production, as the main source of WF from which most is imported, shows the possibility of reducing the WF of these systems by prioritizing and optimizing water consumption by crops using local resources with lower water requirements.
Collapse
|
5
|
Tata A, Massaro A, Riuzzi G, Lanza I, Bragolusi M, Negro A, Novelli E, Piro R, Gottardo F, Segato S. Ambient mass spectrometry for rapid authentication of milk from Alpine or lowland forage. Sci Rep 2022; 12:7360. [PMID: 35513691 PMCID: PMC9072378 DOI: 10.1038/s41598-022-11178-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/15/2022] [Indexed: 01/22/2023] Open
Abstract
Metabolomics approaches, such as direct analysis in real time-high resolution mass spectrometry (DART-HRMS), allow characterising many polar and non-polar compounds useful as authentication biomarkers of dairy chains. By using both a partial least squares discriminant analysis (PLS-DA) and a linear discriminant analysis (LDA), this study aimed to assess the capability of DART-HRMS, coupled with a low-level data fusion, discriminate among milk samples from lowland (silages vs. hay) and Alpine (grazing; APS) systems and identify the most informative biomarkers associated with the main dietary forage. As confirmed also by the LDA performed against the test set, DART-HRMS analysis provided an accurate discrimination of Alpine samples; meanwhile, there was a limited capacity to correctly recognise silage- vs. hay-milks. Supervised multivariate statistics followed by metabolomics hierarchical cluster analysis allowed extrapolating the most significant metabolites. Lowland milk was characterised by a pool of energetic compounds, ketoacid derivates, amines and organic acids. Seven informative DART-HRMS molecular features, mainly monoacylglycerols, could strongly explain the metabolomic variation of Alpine grazing milk and contributed to its classification. The misclassification between the two lowland groups confirmed that the intensive dairy systems would be characterised by a small variation in milk composition.
Collapse
Affiliation(s)
- Alessandra Tata
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale Delle Venezie, Vicenza, Italy
| | - Andrea Massaro
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale Delle Venezie, Vicenza, Italy
| | - Giorgia Riuzzi
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy
| | - Ilaria Lanza
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy
| | - Marco Bragolusi
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale Delle Venezie, Vicenza, Italy
| | - Alessandro Negro
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale Delle Venezie, Vicenza, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Roberto Piro
- Experimental Chemistry Laboratory, Istituto Zooprofilattico Sperimentale Delle Venezie, Vicenza, Italy
| | - Flaviana Gottardo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy
| | - Severino Segato
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy.
| |
Collapse
|
6
|
Bittante G, Cecchinato A, Tagliapietra F, Schiavon S, Toledo-Alvarado H. Effects of breed, farm intensiveness, and cow productivity level on cheese-making ability predicted using infrared spectral data at the population level. J Dairy Sci 2021; 104:11790-11806. [PMID: 34389149 DOI: 10.3168/jds.2021-20499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Fourier-transform infrared (FTIR) spectra collected during milk recording schemes at population level can be used for predicting novel traits of interest for farm management, cows' genetic improvement, and milk payment systems. The aims of this study were as follows. (1) To predict cheese yield traits using FTIR spectra from routine milk recordings exploiting previously developed calibration equations. (2) To compare the predicted cheese-making abilities of different dairy and dual-purpose breeds. (3) To analyze the effects of herds' level of intensiveness (HL) and of the cow's level of productivity (CL). (4) To compare the patterns of predicted cheese yields with the patterns of milk composition in different breeds to discern the drivers of cheese-making efficiency. The major sources of variation of FTIR predictions of cheese yield ability (fresh cheese or cheese solids produced per unit milk) of individual milk samples were studied on 115,819 cows of 4 breeds (2 specialized dairy breeds, Holstein and Brown Swiss, and 2 dual-purpose breeds, Simmental and Alpine Grey) from 6,430 herds and exploiting 1,759,706 FTIR test-day spectra collected over 7 yr of milk sampling. Calibration equations used were previously developed on 1,264 individual laboratory model cheese procedures (cross-validation R2 0.85 and 0.95 for fresh and solids cheese yields, respectively). The linear model used for statistical analysis included the effects of parity, lactation stage, year of calving, month of sampling, HL, CL, breed of cow, and the interactions breed × HL and breed × CL. The HL and CL stratifications (5 classes each) were based on average daily secretion of milk net energy per cow. All effects were highly significant (P < 0.001). The major conclusions were as follows. (1) The FTIR-based prediction of cheese yield of milk goes beyond the knowledge of fat and protein content, partially explaining differences in cheese-making ability in different cows, breeds and herds. (2) Differences in cheese yields of different breeds are only partially explained by milk fat and protein composition, and less productive breeds are characterized by a higher milk nutrient content as well as a higher recovery of nutrients in the cheese. (3) High-intensive herds not only produce much more milk, but the milk has a higher nutrient content and a higher cheese yield, whereas within herds, compared with less productive cows, the more productive cows have a much greater milk yield, milk with a greater content of fat but not of protein, and a moderate improvement in cheese yield, differing little from expectations based on milk composition. Finally, (4) the effects of HL and CL on milk quality and cheese-making ability are similar but not identical in different breeds, the less productive ones having some advantage in terms of cheese-making ability. We can obtain FTIR-based prediction of cheese yield from individual milk samples retrospectively at population level, which seems to go beyond the simple knowledge of milk composition, incorporating information on nutrient retention ability in cheese, with possible advantages for management of farms, genetic improvement of dairy cows, and milk payment systems.
Collapse
Affiliation(s)
- Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), 35020 Legnaro (PD), Italy.
| | - Franco Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova (Padua), 35020 Legnaro (PD), Italy
| | - Hugo Toledo-Alvarado
- Department of Genetics and Biostatistics, National Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
7
|
Factors Affecting e-Government Adoption by Dairy Farmers: A Case Study in the North-West of Spain. FUTURE INTERNET 2021. [DOI: 10.3390/fi13080206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the objective of assessing the farmers’ situation regarding the use of the ICT and their relations with the electronic government, a case study consisting in the realization of 34 face-to-face surveys was conducted between February and March 2020 in dairy farms in the region of Galicia (Spain). The sample was selected according to one of the most important online journals in the farming sector at a national level. From the census, we chose those farms considered most representative taking into account the main criteria: the level of PAC (Common Agrarian Politics) subsidies and milk production (litres/cow and year). The results show that the majority of the farmers used the internet, but on many an occasion, they were discontented in relation to the poor connection quality in their farms. In regard to the use of the electronic government for procedures related to their farms, many of them were able to perform them through the government website; however, there were procedures which the users defined as “complex” and which had to be outsourced to authorised entities. The results also show that the farmers do want to employ the e-government, mainly because of the time and cost saving; however, the current web pages do not meet the users’ expectations. Finally, this situation, applied to a region placed among the 10 most productive regions of milk, is comparable to what happens in other regions.
Collapse
|
8
|
Angerer V, Sabia E, König von Borstel U, Gauly M. Environmental and biodiversity effects of different beef production systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112523. [PMID: 33839605 DOI: 10.1016/j.jenvman.2021.112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Agricultural livestock production ranks among the most environmental impactful industry sectors at the global level, and within the livestock sector, beef production accounts for a large proportion of environmental damage. Beef production in Alpine mountain regions, such as in South Tyrol (Italy), is a small, but increasing agricultural sector. Thus, the aim of this study was to examine the environmental impact of different organic and conventional beef production systems in South Tyrol and to compare their environmental impact and effect on biodiversity under Alpine production conditions. Live cycle assessment (LCA) approach was used and 1 kg of live weight (LW) was chosen as functional unit (FU). Global warming potential (GWP, kg CO2-eq), acidification potential (AP, g SO2-eq), eutrophication potential (EP, g PO4-eq), non-renewable energy use (NRE, MJ-eq), land occupation (LO, m2 organic land/year) and biodiversity damage potential (BDP) expressed in potential disappeared fraction (PDF) were investigated. The study involved 18 beef cattle farms in the South Tyrolean region: Conventional calf-fattening farms (CCF = 6), organic suckler cow farms (SCF = 6), and conventional heifer/ox fattening farms (HOF = 6). The CCF system showed a higher environmental impact compared to SCF and HOF systems for all impact categories (P < 0.05). Between the organic and the conventional system (SCF and HOF), no significant differences (P > 0.05) were found for most of the considered impact categories (means ± SEM per FU): GWP: 19.8 vs 17.1 ± 4.2 kg CO2-eq, AP: 11.4 vs 9.3 ± 4.7 g SO2-eq, EP: 4.1 vs 2.8 ± 1.2, NRE: 21.9 vs 13.8 ± 7 MJ-eq, SCF and HOF respectively. Only for LO (70.8 vs 44.1 ± 17.7 m2 organic/y, P < 0.01, SCF and HOF respectively) and the effect on BDP (-1.93 vs -0.85 ± 0.35, PDF, P < 0.01, SCF and HOF respectively) differences between organic and conventional production methods could be revealed. The study showed that beef cattle husbandry in the Alpine area has a satisfactory environmental performance. In particular, the systems studied showed a positive impact in terms of biodiversity.
Collapse
Affiliation(s)
- Verena Angerer
- Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, Bolzano, 39100, Italy
| | - Emilio Sabia
- Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, Bolzano, 39100, Italy.
| | - Uta König von Borstel
- Department of Animal Breeding and Genetics, Justus-Liebig-Universität Gießen, Leihgesterner Weg 52, 35392, Gießen, Germany
| | - Matthias Gauly
- Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, Bolzano, 39100, Italy
| |
Collapse
|
9
|
Evaluation of Virtual Water and Water Sustainability of Dairy Production in Trentino Alto Adige (North-Eastern Italy). Animals (Basel) 2021; 11:ani11041047. [PMID: 33917785 PMCID: PMC8068115 DOI: 10.3390/ani11041047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Dairy consumption is growing, and both the Italian production and the importation of dairy products are increasing to meet demand. As a first step toward understanding the environmental impacts of water use in the expanding dairy industry, the water footprint approach was used to compute the virtual water and water sustainability of dairy system in Trentino Alto Adige, a region characterized by small-scale farms and typical production. The results highlight that dairy products can be produced with minimal potential to contribute to freshwater scarcity. However, dairy production systems vary, both in production patterns and local environmental context. The development of dairy farming systems with high consumptive water requirements should be avoided in water-stressed regions and supported in particularly suitable regions, as Trentino Alto Adige. Abstract Dairy products play a significant role in the human diet, but they are often associated with high freshwater resource depletion. In Italy, the dairy sector represents more than 12% of the total turnover of the agri-food sector. Trentino Alto Adige is the first Italian region in terms of number of dairy farms, but it does not register a quantitatively consistent dairy production. Notwithstanding, it is characterized mostly by small-scale farms whose strengths are the Protected Designations of Origin and typical mountain productions. The present study aims at: (i) accounting for the virtual water VW of the main dairy products (milk, butter and cheese) produced in Trentino Alto Adige; (ii) estimating the renewable water resources based on the water flow assessment of the study area; (iii) assessing water sustainability comparing the virtual water consumption of the dairy sector at a regional level to the water availability. The findings show that the consumptive virtual water related to dairy production represents about 1% of the water availability in Trentino Alto Adige. Italy’s domestic dairy production is expanding to meet the growing demand, but the expansion of dairy farming in water-stressed regions should be avoided, preferring instead suitable mountain regions where small-scale farms represent a lively entrepreneurial substrate.
Collapse
|
10
|
Bulk milk quality as affected by cattle breed composition of the herd in mountain area. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to investigate the variation of gross composition, somatic cell count, urea content, and fatty acids (FA) composition of bulk milk from single-breed and multi-breed farms in alpine area, keeping either Brown Swiss (BS), Holstein Friesian (HF), Simmental (SI), or their combinations. Gross milk composition, urea content, and FA composition were predicted using mid-infrared spectroscopy. Observations were grouped in 7 combinations consisting of 3 singlebreed and 4 multi-breed types of herd. A mixed linear model was used for data analysis, accounting for the fixed effects of herd composition (7 combinations), month of sampling, year of sampling, and the interactions between herd composition and month of sampling, and between herd composition and year of sampling. Farm was included as random effect. Results highlighted that about two thirds of South Tyrolean farms were single-breed and herds with more than 20 lactating cows changed herd structure over time, switching from multi- to single-breed. Single-breed BS farms produced milk with greater fat, protein, casein, lactose, and FA content than single-breed HF and SI farms. Further, multi-breed herds including BS cows produced milk with greater fat, protein, casein, and polyunsaturated FA content than multi-breed HF+SI herds. Overall, single-breed SI farms produced milk with lower somatic cell count than other herd combinations. Despite the number of BS cows in South Tyrol has decreased in favor of SI in the last years, this breed is still the most interesting for alpine dairy farming to achieve optimal milk quality in both single- and multi-breed scenarios. The tendency to move to SI is mainly related to good milk performance of SI cows coupled with their robustness, high carcass value, high market value of calves, and adaptability to mountain farming system.
Collapse
|
11
|
Zanon T, De Monte E, Gauly M. Effects of cattle breed and production system on veterinary diagnoses and administrated veterinary medicine in alpine dairy farms. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1953410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Thomas Zanon
- Facoltá di scienze e tecnologie, Libera Universitá di Bolzano, Bolzano Italy
| | - Erica De Monte
- Facoltá di scienze e tecnologie, Libera Universitá di Bolzano, Bolzano Italy
| | - Matthias Gauly
- Facoltá di scienze e tecnologie, Libera Universitá di Bolzano, Bolzano Italy
| |
Collapse
|
12
|
Zanon T, König S, Gauly M. A comparison of animal-related figures in milk and meat production and economic revenues from milk and animal sales of five dairy cattle breeds reared in Alps region. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1839361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Thomas Zanon
- Facoltà di Scienze e Tecnologie, Free University of Bolzano, Bolzano, Italy
| | - Sven König
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig University Giessen, Giessen, Germany
| | - Matthias Gauly
- Facoltà di Scienze e Tecnologie, Free University of Bolzano, Bolzano, Italy
| |
Collapse
|
13
|
Verduna T, Blanc S, Merlino VM, Cornale P, Battaglini LM. Sustainability of Four Dairy Farming Scenarios in an Alpine Environment: The Case Study of Toma di Lanzo Cheese. Front Vet Sci 2020; 7:569167. [PMID: 33195548 PMCID: PMC7581711 DOI: 10.3389/fvets.2020.569167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
The dairy sector accounts for a large share of all European agricultural production, at the same time however, it is one of the most ascribed sector contributors to the environmental impact of agriculture, particularly for greenhouse gas emissions. Simultaneously, it is a strategic sector for the economy but generates increasing debate in the community regarding the social aspects mainly related to the use of resources and the food-feed competition of livestock involving the reduction of human-edible crops. In this general framework, this study aims to compare four different dairy farming scenarios characterized by different use of environmental resources in the Alpine area, considering as a case study the production of the Toma di Lanzo cheese (a traditional cheese produced in the mountainous regions of Piedmont-Northwest Italy). The study envisaged the integrated use of three methodologies: Life Cycle Assessment, Life Cycle Costing and the assessment of human-edible feed conversion efficiency to jointly analyze environmental, economic and social aspects. The main results of this research highlighted how the utilization of local breeds, which maximize the efficiency in the use of territory resources, such as grasslands in a mountain environment, allowed dairy production to reduce emissions, when compared to the high-input traditional breeding systems. Although the mountain livestock systems have several critical issues mainly linked to social factors such as low generational turnover, work schedules, modest life quality of families, it is however possible to earn more income than in lowland scenarios. At the same time, this production system allows the Toma di Lanzo cheese-making heritage to be preserved. This mountain pasture cheese, to which superior organoleptic and nutritional characteristics are attributable, when compared to cheeses from the valley floor, incorporates traditional values, a link to the territory and the transmission of knowledge. With reference to food-feed competition in livestock involving the reduction of the use of human-edible crops and feedstuffs in animal diets, we found that grazing and grass-based feeding systems were one of the most sustainable ways to produce milk.
Collapse
Affiliation(s)
- Tibor Verduna
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Simone Blanc
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | | | - Paolo Cornale
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Luca Maria Battaglini
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Effect of Feed Concentrate Intake on the Environmental Impact of Dairy Cows in an Alpine Mountain Region Including Soil Carbon Sequestration and Effect on Biodiversity. SUSTAINABILITY 2020. [DOI: 10.3390/su12052128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several studies on the environmental impacts of livestock enterprises are based on the application of life cycle assessments (LCA). In Alpine regions, soil carbon sequestration can play an important role in reducing environmental impacts. However, there is no official methodology to calculate this possible reduction. Biodiversity plays an important role in the Alpine environment and is affected by human activities, such as cattle farming. Our aim was to estimate the carbon footprint (CF) of four different dairy production systems (different in breeds and feeding intensity) by using the LCA approach. The present study included 44 dairy Alpine farms located in the autonomous province of Bolzano in northern Italy. Half of the farms (n = 22) kept Alpine Grey and the other half (n = 22) Brown Swiss cattle. Within breeds, the farms were divided by the amount of concentrated feed per cow and day into high concentrate (HC) and low concentrate (LC). This resulted in 11 Alpine Grey low concentrate (AGLC) farms feeding an average amount of 3.0 kg concentrated feed/cow/day and 11 Alpine Grey high concentrate (AGHC) farms with an average amount of 6.3 kg concentrated feed/cow/day. Eleven farms kept Brown Swiss cows with an average amount of 3.7 kg concentrated feed/cow/day (BSLC) and another 11 farms feeding on average 7.6 kg concentrated feed/cow/day (BSHC). CF for the four systems was estimated using the LCA approach. The functional unit was 1 kg of fat and protein corrected milk (FPCM). Furthermore, two methodologies have been applied to estimate soil carbon sequestration and effect on biodiversity. The system with the lowest environmental impact in terms of CF was BSHC (1.14 kg CO2-eq/kg of FPCM), while the most impactful system was the AGLC group (1.55 kg CO2-eq/kg of FPCM). Including the CF reduction due to soil carbon sequestered from grassland, it decreased differently for the two applied methods. For all four systems, the main factor for CF was enteric emission, while the main pollutant was biogenic CH4. Conversely, AGLC had the lowest impact when the damage to biodiversity was considered (damage score = 0.41/kg of FPCM, damage to ecosystem diversity = 1.78 E-07 species*yr/kg FPCM). In comparison, BSHC had the greatest impact in terms of damage to biodiversity (damage score = 0.56/kg of FPCM, damage to ecosystem diversity = 2.49 E-07 species*yr/kg FPCM). This study indicates the importance of including soil carbon sequestration from grasslands and effects on biodiversity when calculating the environmental performance of dairy farms.
Collapse
|